2024
Abundant extrasynaptic expression of α3β4-containing nicotinic acetylcholine receptors in the medial habenula–interpeduncular nucleus pathway in mice
Tsuzuki A, Yamasaki M, Konno K, Miyazaki T, Takei N, Tomita S, Yuzaki M, Watanabe M. Abundant extrasynaptic expression of α3β4-containing nicotinic acetylcholine receptors in the medial habenula–interpeduncular nucleus pathway in mice. Scientific Reports 2024, 14: 14193. PMID: 38902419, PMCID: PMC11189931, DOI: 10.1038/s41598-024-65076-3.Peer-Reviewed Original ResearchConceptsMHb-IPN pathwayMHb neuronsNicotine dependenceNicotinic acetylcholine receptorsAcetylcholine receptorsNicotine-related behaviorsCell surfaceImmunoelectron microscopySubunitAxonal compartmentFunctional roleNeurotransmitter releasePresynaptic terminalsSubcellular expressionPathwaySimultaneous detectionDistribution patternsSynaptic junctionsNAChRsAnatomical basisExpressionNegative controlReceptorsNeuronsAntibodies3-Hydroxykynurenine targets kainate receptors to promote defense against infection
Parada-Kusz M, Clatworthy A, Goering E, Blackwood S, Shigeta J, Mashin E, Salm E, Choi C, Combs S, Lee J, Rodriguez-Osorio C, Clish C, Tomita S, Hung D. 3-Hydroxykynurenine targets kainate receptors to promote defense against infection. Nature Chemical Biology 2024, 20: 1586-1596. PMID: 38898166, DOI: 10.1038/s41589-024-01635-z.Peer-Reviewed Original ResearchKainate-sensitive glutamate receptorsHost tryptophan metabolismHost survivalBacterial infectionsPromote host survivalGlutamate receptorsLethal bacterial infectionHost-pathogenIn vivo chemical screeningTryptophan metabolismPromote defenseBacterial expansionOutcome of infectionChemical screeningZebrafish embryosAntibacterial activityKainate receptorsPathogen eradicationPathogensHostModulate immunityNervous systemInfectionMetabolismReceptors
2023
Glutamatergic Pathways and Receptors
Tomita S. Glutamatergic Pathways and Receptors. 2023, 197-200. DOI: 10.1007/978-3-031-15070-8_30.Peer-Reviewed Original ResearchGlutamate receptorsSynaptic transmissionSynaptic plasticityReceptor activityGlutamate receptor activityGlutamate-gated cation channelsMajor excitatory neurotransmitterGi/oG protein-coupled receptorsProtein-coupled receptorsGlutamate releaseExcitatory neurotransmitterNMDA receptorsGlutamatergic pathwaysKainate receptorsAMPA receptorsTherapeutic strategiesDistinct synapsesPostsynaptic signalingNeurological disordersSynaptic strengthGq signalingNeurodegenerative diseasesReceptorsCation channels
2019
Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation
McCarroll MN, Gendelev L, Kinser R, Taylor J, Bruni G, Myers-Turnbull D, Helsell C, Carbajal A, Rinaldi C, Kang HJ, Gong JH, Sello JK, Tomita S, Peterson RT, Keiser MJ, Kokel D. Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nature Communications 2019, 10: 4078. PMID: 31501447, PMCID: PMC6733874, DOI: 10.1038/s41467-019-11936-w.Peer-Reviewed Original ResearchConceptsParadoxical excitationGABAA receptorsCentral nervous system depressantsSerotonin 6 receptorMost anesthetic drugsDifferent neuronal targetsHuman GABAA receptorsNeuronal targetsNeuronal activityAnesthetic drugsMotor activitySerotonin receptor ligandsSedationReceptor ligandsReceptorsCaudal hindbrainAnestheticsPrimary targetPrevious studiesGABATargetNeuronsActivityBrain
2017
GARLH Family Proteins Stabilize GABAA Receptors at Synapses
Yamasaki T, Hoyos-Ramirez E, Martenson JS, Morimoto-Tomita M, Tomita S. GARLH Family Proteins Stabilize GABAA Receptors at Synapses. Neuron 2017, 93: 1138-1152.e6. PMID: 28279354, PMCID: PMC5347473, DOI: 10.1016/j.neuron.2017.02.023.Peer-Reviewed Original ResearchConceptsInhibitory transmissionSynaptic transmissionSynaptic localizationInhibitory synaptic transmissionFast inhibitory transmissionFast synaptic transmissionIonotropic neurotransmitter receptorsLigand-gated ion channelsAuxiliary subunitsGABAA receptorsIonotropic GABANeurotransmitter receptorsNeuroligin-2GABAReceptorsAnion channelIon channelsBrainHippocampusFindingsSynapses
2016
Glutamatergic Pathways and Receptors
Tomita S. Glutamatergic Pathways and Receptors. 2016, 231-236. DOI: 10.1007/978-3-319-24551-5_29.Peer-Reviewed Original ResearchGlutamate receptorsSynaptic transmissionSynaptic plasticityReceptor activityGlutamate receptor activityGlutamate-gated cation channelsMajor excitatory neurotransmitterGi/oG protein-coupled receptorsProtein-coupled receptorsGlutamate releaseExcitatory neurotransmitterNMDA receptorsGlutamatergic pathwaysKainate receptorsAMPA receptorsTherapeutic strategiesDistinct synapsesPostsynaptic signalingNeurological disordersSynaptic strengthGq signalingNeurodegenerative diseasesReceptorsCation channels
2014
Synaptic localization of neurotransmitter receptors: comparing mechanisms for AMPA and GABAA receptors
Martenson JS, Tomita S. Synaptic localization of neurotransmitter receptors: comparing mechanisms for AMPA and GABAA receptors. Current Opinion In Pharmacology 2014, 20: 102-108. PMID: 25529200, PMCID: PMC4318715, DOI: 10.1016/j.coph.2014.11.011.Peer-Reviewed Original ResearchConceptsSynaptic localizationBasal transmissionGABAA receptorsSynaptic transmissionAMPA receptorsNeurotransmitter receptorsSynaptic plasticityFast synaptic transmissionMultiple receptor subunitsIonotropic neurotransmitter receptorsSynaptic insertionReceptor numberReceptor subunitsReceptorsPrecise mechanismReceptor propertiesAuxiliary subunitsTARP auxiliary subunitsRecent findingsDistinct mechanismsAMPAPostsynapsesPlasticitySynapsesPharmacology
2013
Homeostatic Control of Synaptic Transmission by Distinct Glutamate Receptors
Yan D, Yamasaki M, Straub C, Watanabe M, Tomita S. Homeostatic Control of Synaptic Transmission by Distinct Glutamate Receptors. Neuron 2013, 78: 687-699. PMID: 23719165, PMCID: PMC3668311, DOI: 10.1016/j.neuron.2013.02.031.Peer-Reviewed Original ResearchConceptsKainate receptor activityGlutamate receptorsReceptor activitySynaptic transmissionNeuronal activityHigh-affinity kainate receptor subunitKainate receptor-mediated currentsDistinct glutamate receptorsReceptor-mediated currentsAMPA receptor activitySynaptic AMPA receptorsPostsynaptic glutamate receptorsKainate receptor subunitsAbundant excitatory neurotransmitterCerebellar granule cellsReceptor channel propertiesExcitatory neurotransmitterNMDA receptorsAMPA receptorsGranule cellsReceptor subunitsReceptorsSpike generationHomeostatic controlGluK5 subunits
2011
Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1
Straub C, Hunt DL, Yamasaki M, Kim KS, Watanabe M, Castillo PE, Tomita S. Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1. Nature Neuroscience 2011, 14: 866-873. PMID: 21623363, PMCID: PMC3125417, DOI: 10.1038/nn.2837.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBiophysical PhenomenaBiophysicsCA1 Region, HippocampalCell Line, TransformedCerebellumDisks Large Homolog 4 ProteinDizocilpine MaleateDose-Response Relationship, DrugDrug InteractionsElectric StimulationExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression RegulationGreen Fluorescent ProteinsGuanylate KinasesHumansImmunoprecipitationIn Vitro TechniquesIntracellular Signaling Peptides and ProteinsKainic AcidLDL-Receptor Related ProteinsLipoproteins, LDLMembrane PotentialsMembrane ProteinsMiceMice, KnockoutNeuronsPatch-Clamp TechniquesPresynaptic TerminalsProtein BindingProtein SubunitsReceptors, Kainic AcidReceptors, N-Methyl-D-AspartateSynaptophysinTransfectionTritium
2010
Hippocampal AMPA Receptor Gating Controlled by Both TARP and Cornichon Proteins
Kato AS, Gill MB, Ho MT, Yu H, Tu Y, Siuda ER, Wang H, Qian YW, Nisenbaum ES, Tomita S, Bredt DS. Hippocampal AMPA Receptor Gating Controlled by Both TARP and Cornichon Proteins. Neuron 2010, 68: 1082-1096. PMID: 21172611, PMCID: PMC3034222, DOI: 10.1016/j.neuron.2010.11.026.Peer-Reviewed Original ResearchConceptsTransmembrane AMPA receptor regulatory proteinsAMPA receptor complexesHippocampal neuronsAMPA receptorsCornichon ProteinsReceptor complexAMPA receptor traffickingReceptor regulatory proteinsGlutamate applicationKnockout miceTARP γReceptor pharmacologyCNIH-2Electrophysiological propertiesPostsynaptic densityAMPA receptor gatingSubunit combinationsProtein levelsResensitizationReceptor traffickingNeuronsPharmacologyReceptorsReceptor gatingRecombinant systemsTARP Phosphorylation Regulates Synaptic AMPA Receptors through Lipid Bilayers
Sumioka A, Yan D, Tomita S. TARP Phosphorylation Regulates Synaptic AMPA Receptors through Lipid Bilayers. Neuron 2010, 66: 755-767. PMID: 20547132, PMCID: PMC2887694, DOI: 10.1016/j.neuron.2010.04.035.Peer-Reviewed Original ResearchConceptsAMPA receptor activityTransmembrane AMPA receptor regulatory proteinsReceptor activityGlutamate receptorsSynaptic transmissionAMPA receptorsAMPA receptor-mediated synaptic transmissionPredominant excitatory neurotransmitter receptorsReceptor-mediated synaptic transmissionAMPA-type glutamate receptorsSynaptic AMPA receptorsFast synaptic transmissionIonotropic glutamate receptorsExcitatory neurotransmitter receptorsReceptor regulatory proteinsNeuronal activityNeurotransmitter receptorsPSD-95Synaptic strengthNeural circuitsReceptorsPhosphorylation-dependent mannerStargazinSynapsesTarp phosphorylation
2009
A Transmembrane Accessory Subunit that Modulates Kainate-Type Glutamate Receptors
Zhang W, St-Gelais F, Grabner CP, Trinidad JC, Sumioka A, Morimoto-Tomita M, Kim KS, Straub C, Burlingame AL, Howe JR, Tomita S. A Transmembrane Accessory Subunit that Modulates Kainate-Type Glutamate Receptors. Neuron 2009, 61: 385-396. PMID: 19217376, PMCID: PMC2803770, DOI: 10.1016/j.neuron.2008.12.014.Peer-Reviewed Original ResearchConceptsKainate-type glutamate receptorsGlutamate receptorsIonotropic glutamate receptorsKainate receptorsSynaptic transmissionSurface expressionNative kainate receptorsFast synaptic transmissionKainate receptor subunitsBrain-specific proteinsExcitatory transmissionNMDA receptorsAMPA receptorsReceptor subunitsReceptorsProtein levelsNETO2Auxiliary subunitsTARP auxiliary subunitsBrainVertebrate brainKainate receptor GluR6Proteomic screenMajor roleMEPSCs