1998
Axon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental Study
Fern R, Davis P, Waxman S, Ransom B. Axon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental Study. Journal Of Neurophysiology 1998, 79: 95-105. PMID: 9425180, DOI: 10.1152/jn.1998.79.1.95.Peer-Reviewed Original ResearchConceptsAnoxia/aglycemiaCompound action potentialWithdrawal of oxygenOptic nerveCNS white matterWhite matterIsolated rat optic nerveEvoked compound action potentialAdult optic nerveOptic nerve functionRat optic nervePostnatal day 10Permanent lossMin of glucoseEnergy deprivationWithdrawal of glucoseGlucose withdrawalNerve functionAstrocytic glycogenAxon conductionHeightened metabolic activityAdult ratsAglycemiaIrreversible injuryNerve
1997
Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons
Steffensen I, Waxman S, Mills L, Stys P. Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons. Brain Research 1997, 776: 1-9. PMID: 9439790, DOI: 10.1016/s0006-8993(97)00868-8.Peer-Reviewed Original ResearchConceptsOptic nerveSpinal cordDorsal root axonsSciatic nerve sectionRat optic nerveCentral myelinated axonsCardiac type IFiner processesSimilar staining patternNerve sectionDorsal columnsSciatic nerveFrozen cryostat sectionsAnoxic injuryAxonal profilesImmunofluorescence labeling techniqueMyelinated axonsCell bodiesCryostat sectionsImportant mediatorAxonal localizationMammalian axonsNerveAxonsStaining patternRegulation of Na+ channel β1 and β2 subunit mRNA levels in cultured rat astrocytes
Oh Y, Lee Y, Waxman S. Regulation of Na+ channel β1 and β2 subunit mRNA levels in cultured rat astrocytes. Neuroscience Letters 1997, 234: 107-110. PMID: 9364509, DOI: 10.1016/s0304-3940(97)00694-0.Peer-Reviewed Original ResearchConceptsReverse transcription-polymerase chain reactionMRNA levelsSpinal cordCompetitive reverse transcription-polymerase chain reactionQuantitative competitive reverse transcription-polymerase chain reactionSpinal cord astrocytesRat optic nerveDibutyryl cAMPBeta 2 mRNACultured rat astrocytesTranscription-polymerase chain reactionBeta 1 mRNASubunit mRNA levelsNeuroblastoma cell linesOptic nerveChannel β1Cultured astrocytesRat astrocytesCalcium ionophoreAstrocytesBeta 1Chain reactionCell linesCordMRNA
1994
Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons
Waxman S, Black J, Ransom B, Stys P. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons. Brain Research 1994, 644: 197-204. PMID: 8050031, DOI: 10.1016/0006-8993(94)91680-2.Peer-Reviewed Original ResearchConceptsOptic nerveOptic nerve axonsRat optic nerveNerve axonsBrain slice chamberCompound action potentialLoss of cristaeMicroM tetrodotoxinAnoxic injuryNormoxic controlsNerveAstrocyte processesPerinodal astrocyte processesWhite matterMyelinated axonsAstrocytic processesCNS axonsTetrodotoxinAction potentialsSlice chamberAxonsLoss of microtubulesCytoskeletal damageInjuryNormoxic conditionsThe expression of rat brain voltage-sensitive Na+ channel mRNAs in astrocytes
Oh Y, Black J, Waxman S. The expression of rat brain voltage-sensitive Na+ channel mRNAs in astrocytes. Brain Research 1994, 23: 57-65. PMID: 8028484, DOI: 10.1016/0169-328x(94)90211-9.Peer-Reviewed Original ResearchConceptsRat brainChannel mRNAChannel subtypesCultured spinal cordSkeletal muscleRat optic nerveNeuronal cell bodiesRegions of CNSSubtype IRat skeletal muscleOptic nervePolymerase chain reactionSpinal cordRat astrocytesDistinct subtypesAstrocytesCell bodiesSubtypesBrainRT-PCRSubtype IIRat tissuesChain reactionRat liverReverse transcription
1993
Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium
Waxman S, Black J, Ransom B, Stys P. Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Research 1993, 614: 137-145. PMID: 8348309, DOI: 10.1016/0006-8993(93)91027-p.Peer-Reviewed Original ResearchConceptsArtificial cerebrospinal fluidMin of anoxiaOptic nerveZero-Ca2White matterAnoxic injuryCNS white matter tractAxonal cytoskeletonOptic nerve axonsCNS white matterRat optic nerveInflux of Ca2White matter tractsLoss of cristaeDisorganization of cristaeMembranous profilesUltrastructure of axonsAbnormal influxCerebrospinal fluidExtracellular calciumNerveMyelinated axonsNerve axonsNormal Ca2Axons
1992
Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter
Stys P, Waxman S, Ransom B. Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter. Cerebrovascular And Brain Metabolism Reviews 1992, 12: 977-986. PMID: 1400652, DOI: 10.1038/jcbfm.1992.135.Peer-Reviewed Original ResearchConceptsFunctional recoveryWhite matterAnoxic injuryMin of anoxiaOptic nerveFunctional outcomeTypical CNS white matter tractAnoxic exposureIntracellular Ca2Anoxic/ischemic injuryCNS white matter tractCompound action potential areaGray matterIsolated rat optic nerveGreater functional recoveryEvoked electrical activityAction potential areaCNS white matterRat optic nerveWhite matter tractsFunctional injuryIschemic injuryPathological increaseAnoxic damageCAP peakUltrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve
Waxman S, Black J, Stys P, Ransom B. Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Research 1992, 574: 105-119. PMID: 1638387, DOI: 10.1016/0006-8993(92)90806-k.Peer-Reviewed Original ResearchConceptsOptic nerveRat optic nerveMin of anoxiaPost-anoxic recoveryAnoxic injuryAstrocyte processesMyelin sheathLoss of microtubulesCell-mediated damageCNS white matterInflux of calciumLarge-diameter axonsPrevious electrophysiological studiesAction potential conductionWhite matter tractsNodes of RanvierAnoxic insultUltrastructure of axonsGlial cellsVesicular degenerationConduction blockEarly recoveryElectrophysiological studiesNerveSignificant injuryIonic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger
Stys P, Waxman S, Ransom B. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. Journal Of Neuroscience 1992, 12: 430-439. PMID: 1311030, PMCID: PMC6575619, DOI: 10.1523/jneurosci.12-02-00430.1992.Peer-Reviewed Original ResearchConceptsRat optic nerveCompound action potentialAnoxic injuryOptic nerveWhite matterAction potentialsCentral white matter tractsWhite matter injuryCNS white matterMembrane depolarizationAnoxia/ischemiaWhite matter tractsCNS protectionAnoxic insultMyelinated tractsChannel blockersExchanger blockerIrreversible injuryExtracellular Ca2Mammalian CNSNerveInjuryMore injuriesBlockersFunctional integrity
1991
Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter
Stys P, Waxman S, Ransom B. Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter. Annals Of Neurology 1991, 30: 375-380. PMID: 1952825, DOI: 10.1002/ana.410300309.Peer-Reviewed Original ResearchConceptsWhite matterIsolated rat optic nerveCentral nervous system white matterNervous system white matterWhite matter injuryRat optic nerveMammalian central nervous systemSevere neurological impairmentCompound action potentialType of injuryCentral nervous systemFunctional recoveryOptic nervePharmacological blockadeNeurological impairmentAnoxic injuryIrreversible injuryNervous systemAction potentialsInjuryInfluxCa2Critical mechanismCellsNerveCompound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis
Stys P, Ransom B, Waxman S. Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis. Brain Research 1991, 546: 18-32. PMID: 1855148, DOI: 10.1016/0006-8993(91)91154-s.Peer-Reviewed Original Research
1990
Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve
Waxman S, Davis P, Black J, Ransom B. Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve. Annals Of Neurology 1990, 28: 335-340. PMID: 2241117, DOI: 10.1002/ana.410280306.Peer-Reviewed Original ResearchConceptsCompound action potentialOptic nerveCentral white matterMinutes of anoxiaAction potentialsMD ratsWhite matterMammalian central white matterSupramaximal compound action potentialCompound action potential amplitudeAction potential amplitudeNeonatal optic nerveRat optic nerveControl optic nervesDistinct action potentialsWhite matter tractsUnaffected male littermatesAnoxic injuryMale littermatesDays postnatalNervePotential amplitudeOligodendroglial proliferationEffects of anoxiaAdult pattern
1989
Pharmacological sensitivities of two afterhyperpolarizations in rat optic nerve
Gordon T, Kocsis J, Waxman S. Pharmacological sensitivities of two afterhyperpolarizations in rat optic nerve. Brain Research 1989, 502: 252-257. PMID: 2555026, DOI: 10.1016/0006-8993(89)90620-3.Peer-Reviewed Original ResearchConceptsRat optic nerveOptic nerveEarly afterhyperpolarizationPharmacological sensitivityAction potentialsPeak latencyAction potential broadeningConstant current depolarizationSucrose gap chamberPotassium channel blockerLate afterhyperpolarizationChannel blockersRepetitive stimulationAfterhyperpolarizationNervePotassium conductanceSucrose gapTetraethylammoniumPotential broadeningCurrent depolarizationDepolarizationDurationApaminBlockersCharybdotoxin
1988
Evidence for the presence of two types of potassium channels in the rat optic nerve
Gordon T, Kocsis J, Waxman S. Evidence for the presence of two types of potassium channels in the rat optic nerve. Brain Research 1988, 447: 1-9. PMID: 2454699, DOI: 10.1016/0006-8993(88)90959-6.Peer-Reviewed Original ResearchConceptsRat optic nervePostspike positivityOptic nerveAction potential waveformPotassium channelsAction potential broadeningSingle-fiber recordingsRepetitive firing patternsAction potential repolarizationTEA-sensitive channelsDistinct potassium channelsPotential waveformPronounced afterhyperpolarizationFiber recordingsWhole nerveIntracellular hyperpolarizationGap recordingsRepetitive firingMyelinated axonsNerveAction potentialsPotential repolarizationAfterhyperpolarizationFiring patternsProlonged depolarization
1987
Carbonic anhydrase activity develops postnatally in the rat optic nerve
Davis P, Carlini W, Ransom B, Black J, Waxman S. Carbonic anhydrase activity develops postnatally in the rat optic nerve. Brain Research 1987, 31: 291-298. DOI: 10.1016/0165-3806(87)90126-x.Peer-Reviewed Original ResearchRat optic nerveCNS white matterPhysiological alterationsLarger acid shiftDays of ageNeonatal nervesOlder nervesNerve 5Optic nervePostnatal dayWhite matterCarbonic anhydrase activityNerveNeural activityCA activityAgeOligodendrocytesAcid shiftMitotic inhibitorsMyelinAlterationsDaysEnzyme activityActivityOligodendrogliogenesis
1986
A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerve
Black J, Waxman S, Ransom B, Feliciano M. A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerve. Brain Research 1986, 380: 122-135. PMID: 2428420, DOI: 10.1016/0006-8993(86)91436-8.Peer-Reviewed Original ResearchConceptsRat optic nerveOptic nerve volumeNormal optic nervesOptic nerveNerve volumeTotal glial cellsNerve cross sectionsGlial cellsMyelinated fibersAxonal diameterAge-matched control tissueNeonatal rat optic nerveOptic nerve cross sectionsConcomitant marked reductionProgenitor cellsNumber of oligodendrogliaAge-matched controlsGlial cell developmentDays of ageEnsheathed axonsSystemic injectionNerveAstrocytic lineageControl tissuesGliaMolecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve
Black J, Waxman S. Molecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve. Developmental Biology 1986, 115: 301-312. PMID: 2423398, DOI: 10.1016/0012-1606(86)90251-4.Peer-Reviewed Original ResearchConceptsRat optic nerveOptic nerveMyelinated fibersLarge caliber fibersAxonal diameterNeonatal rat optic nerveP-face IMP densityControl optic nervesDays of ageNodes of RanvierUnensheathed axonsGlial ensheathmentSystemic injectionNerveAxonsGliogenesisIMP densityAxolemmaE-face particlesCell associationIntramembranous particlesRatsOligodendrocytesMyelinEnsheathment
1985
Rat optic nerve: Disruption of gliogenesis with 5-azacytidine during early postnatal development
Ransom B, Yamate C, Black J, Waxman S. Rat optic nerve: Disruption of gliogenesis with 5-azacytidine during early postnatal development. Brain Research 1985, 337: 41-49. PMID: 2408709, DOI: 10.1016/0006-8993(85)91607-5.Peer-Reviewed Original ResearchConceptsOptic nerveGlial cellsOptic nerve axonsRat optic nerveCompound action potentialEarly postnatal developmentDays of ageOlder nervesNeonatal treatmentBrain extracellular spaceNeuroglial interactionsElectrophysiological studiesNervePostnatal developmentAction potentialsNerve axonsExcitability propertiesMarked reductionMyelin formationGliogenesisMitotic inhibitorsIonic homeostasisExtracellular spaceAgeAnimals
1982
Rat optic nerve: Freeze-fracture studies during development of myelinated axons
Black J, Foster R, Waxman S. Rat optic nerve: Freeze-fracture studies during development of myelinated axons. Brain Research 1982, 250: 1-20. PMID: 7139310, DOI: 10.1016/0006-8993(82)90948-9.Peer-Reviewed Original ResearchConceptsOptic nerveInternodal axolemmaOptic nerve fibersRat optic nerveGreater mean particle sizeNon-myelinated axonsDays of ageEnsheathed axonsGlial ensheathmentNerve fibersMyelinated fibersDays postnatalNerveMyelinated axonsDays postparturitionAge groupsAxonsDefinitive associationAdult fibersAdult animalsMyelinationInternodal membraneCompact myelinFreeze-fracture studyAxolemmaRat optic nerve: Electrophysiological, pharmacological and anatomical studies during development
Foster R, Connors B, Waxman S. Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development. Brain Research 1982, 3: 371-386. PMID: 7066695, DOI: 10.1016/0165-3806(82)90005-0.Peer-Reviewed Original ResearchConceptsCompound action potentialAction potentialsConduction velocityOptic nerveOptic nerve axonsShort latency peaksRat optic nerveAxonal membrane propertiesShort-latency componentsSixth postnatal dayOnset of myelinationWeeks of ageRelative refractory periodDays of ageGlial cellsPostnatal dayRefractory periodNerve axonsAxonal diameterLatency componentsCalcium conductanceAxonal sizeMyelinationNerve growthLatency peaks