2020
Cumulative hydropathic topology of a voltage‐gated sodium channel at atomic resolution
Xenakis M, Kapetis D, Yang Y, Heijman J, Waxman S, Lauria G, Faber C, Smeets H, Westra R, Lindsey P. Cumulative hydropathic topology of a voltage‐gated sodium channel at atomic resolution. Proteins Structure Function And Bioinformatics 2020, 88: 1319-1328. PMID: 32447794, DOI: 10.1002/prot.25951.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceArcobacterBacterial ProteinsBinding SitesHydrophobic and Hydrophilic InteractionsIon Channel GatingModels, MolecularProtein BindingProtein Conformation, alpha-HelicalProtein Conformation, beta-StrandProtein Interaction Domains and MotifsSodiumThermodynamicsVoltage-Gated Sodium ChannelsConceptsVoltage-gated sodium channelsBacterial channelsPhysiological cellular activitySodium channelsCellular activitiesCell membraneBiological poresPore stabilityAtomic resolutionBiophysical significanceMembrane surfaceHydropathicityGenesProteinMutationsWide spectrumMembraneFunctional architectureAccumulationComputational frameworkSodium ionsPores
2013
A new Nav1.7 mutation in an erythromelalgia patient
Estacion M, Yang Y, Dib-Hajj SD, Tyrrell L, Lin Z, Yang Y, Waxman SG. A new Nav1.7 mutation in an erythromelalgia patient. Biochemical And Biophysical Research Communications 2013, 432: 99-104. PMID: 23376079, DOI: 10.1016/j.bbrc.2013.01.079.Peer-Reviewed Original ResearchConceptsMutations of Nav1.7Voltage-gated sodium channel Nav1.7Year old patientSodium channel Nav1.7Voltage-clamp studiesErythromelalgia patientsOlder patientsDRG neuronsNav1.7 mutationPainful disordersFunction missense mutationsChannel Nav1.7Neuron firingPatientsRamp stimuliExon 20Channel biophysical propertiesControl allelesNav1.7Missense mutationsBiophysical propertiesMutations
2012
Gain-of-function Nav1.8 mutations in painful neuropathy
Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JG, Gerrits MM, Pierro T, Lombardi R, Kapetis D, Dib-Hajj SD, Waxman SG. Gain-of-function Nav1.8 mutations in painful neuropathy. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 19444-19449. PMID: 23115331, PMCID: PMC3511073, DOI: 10.1073/pnas.1216080109.Peer-Reviewed Original ResearchConceptsPainful peripheral neuropathySmall fiber neuropathyPainful neuropathyPeripheral neuropathyPainful small fiber neuropathyDorsal root ganglion neuronsSodium channelsApparent underlying causePeripheral nerve axonsDRG neuronsGanglion neuronsNeuropathyNerve axonsUnderlying causeFunction variantsCurrent clampPatientsPotential pathogenicityNeuronsMutationsHyperexcitabilityAxonsResponse
2006
Mutations in the sodium channel Nav1.7 underlie inherited erythromelalgia
Dib-Hajj S, Rush A, Cummins T, Waxman S. Mutations in the sodium channel Nav1.7 underlie inherited erythromelalgia. Drug Discovery Today Disease Mechanisms 2006, 3: 343-350. DOI: 10.1016/j.ddmec.2006.09.005.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsSympathetic ganglion neuronsDorsal root gangliaHigh-frequency firingSingle action potentialSodium channel Nav1.7Mild thermal stimuliSevere painDRG neuronsPainful conditionsGanglion neuronsRoot gangliaChannel Nav1.7Action potentialsModel diseaseThermal stimuliErythromelalgiaNeuronsMutant channelsFunctional studiesIEMPainGangliaNav1.7MutationsDisease
2000
A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation
Bendahhou S, Cummins T, Hahn A, Langlois S, Waxman S, Ptácek L. A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation. Journal Of Clinical Investigation 2000, 106: 431-438. PMID: 10930446, PMCID: PMC314328, DOI: 10.1172/jci9654.Peer-Reviewed Original ResearchConceptsChannel slow inactivationPeriodic paralysisSlow inactivationSodium channel slow inactivationMalignant hyperthermia susceptibilitySkeletal muscle disordersHuman skeletal muscleParalytic attacksMuscle disordersHyperkalemic periodic paralysisSkeletal muscleParalysisDisease-causing mutationsNovel mutationsHyperKPPChannel defectsMolecular determinantsAlpha subunitMutant channelsMutationsDouble mutationInactivationPatientsTransmembrane segments S5
1999
Activation and Inactivation of the Voltage-Gated Sodium Channel: Role of Segment S5 Revealed by a Novel Hyperkalaemic Periodic Paralysis Mutation
Bendahhou S, Cummins T, Tawil R, Waxman S, Ptácek L. Activation and Inactivation of the Voltage-Gated Sodium Channel: Role of Segment S5 Revealed by a Novel Hyperkalaemic Periodic Paralysis Mutation. Journal Of Neuroscience 1999, 19: 4762-4771. PMID: 10366610, PMCID: PMC6782655, DOI: 10.1523/jneurosci.19-12-04762.1999.Peer-Reviewed Original ResearchMeSH KeywordsCells, CulturedDNA Mutational AnalysisDNA PrimersGene ExpressionHumansHyperkalemiaIon Channel GatingKidneyKineticsMaleMiddle AgedMolecular Sequence DataNAV1.4 Voltage-Gated Sodium ChannelParalyses, Familial PeriodicPatch-Clamp TechniquesPoint MutationProtein Structure, TertiarySequence Homology, Amino AcidSodium ChannelsTransfectionConceptsSegments S5Point mutationsS5 segmentVoltage-Gated Sodium ChannelSodium channelsTransmembrane segments S5Cytoplasmic interfaceWild-type channelsParalysis phenotypeHomologous domainsVoltage-sensitive sodium channelsPotassium-aggravated myotoniaNew point mutationPhenylalanine substitutionSkeletal muscle disordersHyperkalaemic periodic paralysisFast inactivationSecond domainMutationsGenesChannel deactivationInactivationChannel activationSlow inactivationT704M mutation