Molecular Profiling of Mouse Models of Loss or Gain of Function of the KCNT1 (Slack) Potassium Channel and Antisense Oligonucleotide Treatment
Sun F, Wang H, Wu J, Quraishi I, Zhang Y, Pedram M, Gao B, Jonas E, Nguyen V, Wu S, Mabrouk O, Jafar-nejad P, Kaczmarek L. Molecular Profiling of Mouse Models of Loss or Gain of Function of the KCNT1 (Slack) Potassium Channel and Antisense Oligonucleotide Treatment. Biomolecules 2024, 14: 1397. PMID: 39595574, PMCID: PMC11591899, DOI: 10.3390/biom14111397.Peer-Reviewed Original ResearchWild-type miceKO miceSpectrum of epilepsy syndromesAntisense oligonucleotidesGain-of-function variantsAntisense oligonucleotide treatmentEpileptic phenotypePotassium channelsKCNT1Molecular profilingOligonucleotide treatmentAnimal modelsEpilepsy syndromesC-terminal mutationsIncreased expressionCerebral cortexMiceExpression of multiple proteinsComprehensive proteomic analysisDisease modelsCortical mitochondriaMolecular differencesDensity of mitochondrial cristaeMitochondrial membraneTreatmentSulfide quinone oxidoreductase contributes to voltage sensing of the mitochondrial permeability transition pore
Griffiths K, Wang A, Jonas E, Levy R. Sulfide quinone oxidoreductase contributes to voltage sensing of the mitochondrial permeability transition pore. The FASEB Journal 2024, 38: e23494. PMID: 38376922, PMCID: PMC11082757, DOI: 10.1096/fj.202301280r.Peer-Reviewed Original ResearchConceptsMitochondrial permeability transition poreSulfide quinone oxidoreductasePermeability transition poreTransition poreFragile X syndromeQuinone oxidoreductaseMouse heart mitochondriaHeart mitochondriaGenetic silencingAlzheimer's diseaseCardiac mitochondriaPharmacological inhibitionMitochondriaOpen probabilityOxidoreductaseX syndromeTherapeutic targetIncreased expressionModel systemLack of translationVoltage-gated channelsIsolated-perfused heartsPathological openingMyocardial ischemiaClinical therapy