2023
Neural mechanisms to incorporate visual counterevidence in self-movement estimation
Tanaka R, Zhou B, Agrochao M, Badwan B, Au B, Matos N, Clark D. Neural mechanisms to incorporate visual counterevidence in self-movement estimation. Current Biology 2023, 33: 4960-4979.e7. PMID: 37918398, PMCID: PMC10848174, DOI: 10.1016/j.cub.2023.10.011.Peer-Reviewed Original Research
2022
Excitatory and inhibitory neural dynamics jointly tune motion detection
Gonzalez-Suarez AD, Zavatone-Veth JA, Chen J, Matulis CA, Badwan BA, Clark DA. Excitatory and inhibitory neural dynamics jointly tune motion detection. Current Biology 2022, 32: 3659-3675.e8. PMID: 35868321, PMCID: PMC9474608, DOI: 10.1016/j.cub.2022.06.075.Peer-Reviewed Original ResearchNeural mechanisms to exploit positional geometry for collision avoidance
Tanaka R, Clark DA. Neural mechanisms to exploit positional geometry for collision avoidance. Current Biology 2022, 32: 2357-2374.e6. PMID: 35508172, PMCID: PMC9177691, DOI: 10.1016/j.cub.2022.04.023.Peer-Reviewed Original ResearchConceptsSpatial vision taskDistinct visual featuresNeural mechanismsVisual worldVisual motionSmall neural circuitsCollision avoidance behaviorSpatial visionMotion signalsVisual featuresNeural circuitsDrosophila exhibitConnectomic analysisGeometrical cuesSpatial informationVision tasksActivity drivesTuning mirrorMotion detectorsPsychophysicsCuesObjectsTaskBehaviorAvoidanceShallow neural networks trained to detect collisions recover features of visual loom-selective neurons.
Zhou B, Li Z, Kim S, Lafferty J, Clark DA. Shallow neural networks trained to detect collisions recover features of visual loom-selective neurons. ELife 2022, 11 PMID: 35023828, PMCID: PMC8849349, DOI: 10.7554/elife.72067.Peer-Reviewed Original Research
2020
Heterogeneous Temporal Contrast Adaptation in Drosophila Direction-Selective Circuits
Matulis CA, Chen J, Gonzalez-Suarez AD, Behnia R, Clark DA. Heterogeneous Temporal Contrast Adaptation in Drosophila Direction-Selective Circuits. Current Biology 2020, 30: 222-236.e6. PMID: 31928874, PMCID: PMC7003801, DOI: 10.1016/j.cub.2019.11.077.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAnimalsDrosophila melanogasterMotion PerceptionPhotic StimulationTime FactorsVisual Pathways
2019
Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors
Badwan BA, Creamer MS, Zavatone-Veth JA, Clark DA. Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors. Nature Neuroscience 2019, 22: 1318-1326. PMID: 31346296, PMCID: PMC6748873, DOI: 10.1038/s41593-019-0443-y.Peer-Reviewed Original Research
2018
Visual Control of Walking Speed in Drosophila
Creamer MS, Mano O, Clark DA. Visual Control of Walking Speed in Drosophila. Neuron 2018, 100: 1460-1473.e6. PMID: 30415994, PMCID: PMC6405217, DOI: 10.1016/j.neuron.2018.10.028.Peer-Reviewed Original Research
2016
Direct Measurement of Correlation Responses in Drosophila Elementary Motion Detectors Reveals Fast Timescale Tuning
Salazar-Gatzimas E, Chen J, Creamer MS, Mano O, Mandel HB, Matulis CA, Pottackal J, Clark DA. Direct Measurement of Correlation Responses in Drosophila Elementary Motion Detectors Reveals Fast Timescale Tuning. Neuron 2016, 92: 227-239. PMID: 27710784, PMCID: PMC5097865, DOI: 10.1016/j.neuron.2016.09.017.Peer-Reviewed Original ResearchMeSH KeywordsAcoustic StimulationAnimalsDrosophilaModels, NeurologicalMotion PerceptionMotor ActivityNeuronsPhotic StimulationRotationTime Factors