2021
β3 adrenergic receptor as potential therapeutic target in ADPKD
Schena G, Carmosino M, Chiurlia S, Onuchic L, Mastropasqua M, Maiorano E, Schena FP, Caplan MJ. β3 adrenergic receptor as potential therapeutic target in ADPKD. Physiological Reports 2021, 9: e15058. PMID: 34676684, PMCID: PMC8531837, DOI: 10.14814/phy2.15058.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseaseΒ3-ARΒ3-adrenergic receptorTherapeutic targetKidney/body weight ratioΒ3-AR levelSympathetic nerve activityBody weight ratioType 2 receptorCyst-lining epithelial cellsDominant polycystic kidney diseaseRenal tubular cellsNovel therapeutic targetCyclic AMP accumulationPotential therapeutic targetVasopressin type 2 receptorHuman renal tissuePolycystic kidney diseaseFluid-filled cystsADPKD mouse modelNerve activityKidney functionKidney diseaseRenal parenchymaHealthy controls
2019
Everything You Always Wanted to Know about β3-AR * (* But Were Afraid to Ask)
Schena G, Caplan MJ. Everything You Always Wanted to Know about β3-AR * (* But Were Afraid to Ask). Cells 2019, 8: 357. PMID: 30995798, PMCID: PMC6523418, DOI: 10.3390/cells8040357.Peer-Reviewed Original ResearchConceptsNovel pharmacological approachesCurrent clinical practiceNovel therapeutic targetAR signalingΒ3-ARPharmacological approachesOcular diseasesTherapeutic targetAdrenergic receptorsClinical practiceFindings translateClinical areasCellular modelSuitable animalAppealing targetInter-species differencesDiseaseReceptors
2018
Metabolism and mitochondria in polycystic kidney disease research and therapy
Padovano V, Podrini C, Boletta A, Caplan MJ. Metabolism and mitochondria in polycystic kidney disease research and therapy. Nature Reviews Nephrology 2018, 14: 678-687. PMID: 30120380, DOI: 10.1038/s41581-018-0051-1.Peer-Reviewed Original ResearchConceptsPolycystic kidney disease 1Polycystin-1Autosomal dominant polycystic kidney diseaseHallmark of ADPKDFluid-filled renal cystsPolycystin proteinsADPKD cellsPKD genesMolecular mechanismsOxidative phosphorylationCell metabolismRegulatory rolePhysiological functionsADPKD pathogenesisEnergy metabolismPotential therapeutic targetMonogenic diseasesEnergy productionMitochondriaDominant polycystic kidney diseasePolycystic kidney diseaseTherapeutic targetMutationsAlternative pathwayMetabolism
2010
Polycystic kidney disease: Pathogenesis and potential therapies
Takiar V, Caplan MJ. Polycystic kidney disease: Pathogenesis and potential therapies. Biochimica Et Biophysica Acta 2010, 1812: 1337-1343. PMID: 21146605, PMCID: PMC3139769, DOI: 10.1016/j.bbadis.2010.11.014.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseasePolycystic kidney diseaseKidney diseaseRenal tubular epithelial cellsDominant polycystic kidney diseaseNovel therapeutic targetTubular epithelial cellsFluid-filled cystsRenal cyst formationRenal functionTreatment of PKDPathogenetic pathwaysPotential therapyTherapeutic targetDisease pathogenesisClinical therapyCyst formationInherited conditionEpithelial cellsDiseasePathogenesisTherapyPrimary ciliaCystsParenchymaThe cell biology of polycystic kidney disease
Chapin HC, Caplan MJ. The cell biology of polycystic kidney disease. Journal Of Cell Biology 2010, 191: 701-710. PMID: 21079243, PMCID: PMC2983067, DOI: 10.1083/jcb.201006173.Peer-Reviewed Original ResearchConceptsCell growth controlCell biological processesPolycystic kidney diseaseCell biologyBiological processesGrowth controlPKD2 geneFluid-filled cystsNovel therapeutic targetGenetic defectsAutosomal dominant polycystic kidney diseaseCommon genetic disorderNormal renal tubulesDominant polycystic kidney diseaseGenetic disordersTherapeutic targetDisease pathogenesisKidney diseaseMorphogenesisGenesNew lightPKD1BiologyMutationsRenal tubules