2013
Endothelial Cell Sensing of Flow Direction
Wang C, Baker BM, Chen CS, Schwartz MA. Endothelial Cell Sensing of Flow Direction. Arteriosclerosis Thrombosis And Vascular Biology 2013, 33: 2130-2136. PMID: 23814115, PMCID: PMC3812824, DOI: 10.1161/atvbaha.113.301826.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonAnimalsAtherosclerosisCattleCell Culture TechniquesCell ShapeCells, CulturedEndothelial CellsEnzyme ActivationHemodynamicsInflammationMechanotransduction, CellularNF-kappa BNitric OxideNitric Oxide Synthase Type IIIOscillometryPhosphorylationProto-Oncogene Proteins c-aktReactive Oxygen SpeciesRegional Blood FlowStress, MechanicalTime FactorsConceptsEndothelial cellsEndothelial nitric oxide synthaseEndothelial nitric oxide synthase pathwayNitric oxide synthase pathwayNitric oxide synthaseOxide synthase pathwayAtherosclerosis-prone regionsInflammatory activationInflammatory effectsOxide synthaseEndothelial cell responsesCell responsesReactive oxygen productionDisturbed flowNitric oxideNuclear factorSimilar effectsActivationCellsSynthase pathwayInability of cells
2010
Atheroprone Hemodynamics Regulate Fibronectin Deposition to Create Positive Feedback That Sustains Endothelial Inflammation
Feaver RE, Gelfand BD, Wang C, Schwartz MA, Blackman BR. Atheroprone Hemodynamics Regulate Fibronectin Deposition to Create Positive Feedback That Sustains Endothelial Inflammation. Circulation Research 2010, 106: 1703-1711. PMID: 20378855, PMCID: PMC2891748, DOI: 10.1161/circresaha.109.216283.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortic DiseasesApolipoproteins EAtherosclerosisCells, CulturedDisease Models, AnimalEndothelium, VascularFeedback, PhysiologicalFibronectinsHemodynamicsHumansInflammationMechanotransduction, CellularMiceMice, Inbred C57BLMice, KnockoutNF-kappa BPlatelet Endothelial Cell Adhesion Molecule-1Pulsatile FlowRegional Blood FlowRNA InterferenceStress, MechanicalTime FactorsTransfectionUp-RegulationConceptsFN depositionAtheroprone flowPECAM-1FN expressionTranscription factor NF-kappaB.Platelet endothelial cell adhesion moleculeNF-kappaB activationNF-kappaB activityAtheroprone hemodynamicsHuman endothelial cellsEndothelial inflammationProinflammatory phenotypeAortic archInduction of fibronectinCarotid arteryCell adhesion moleculeExogenous fibronectinInflammatory signalingFN accumulationNF-kappaBSustained increaseNF-kappaB.Nuclear factorTransient increaseEndothelial cellsMatrix-Specific Protein Kinase A Signaling Regulates p21-Activated Kinase Activation by Flow in Endothelial Cells
Funk SD, Yurdagul A, Green JM, Jhaveri KA, Schwartz MA, Orr AW. Matrix-Specific Protein Kinase A Signaling Regulates p21-Activated Kinase Activation by Flow in Endothelial Cells. Circulation Research 2010, 106: 1394-1403. PMID: 20224042, PMCID: PMC2862370, DOI: 10.1161/circresaha.109.210286.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Inflammatory AgentsBasement MembraneCattleCdc42 GTP-Binding ProteinCells, CulturedCyclic AMP-Dependent Protein KinasesEndothelial CellsEnzyme ActivationEnzyme ActivatorsHumansIloprostInflammationInflammation MediatorsInjections, IntraperitonealIntegrinsMaleMechanotransduction, CellularMiceMice, Inbred C57BLNF-kappa BP21-Activated KinasesPhosphorylationProtein Kinase InhibitorsPulsatile FlowRac GTP-Binding ProteinsRegional Blood FlowStress, MechanicalTime FactorsTransfectionConceptsInflammatory gene expressionNF-kappaB activationInflammatory signalingEndothelial cellsProstacyclin analogue iloprostBasement membrane proteinsBlood flow patternsPKA-dependent inhibitionInflammatory pathwaysAnalogue iloprostGene expressionKappaB activationNF-kappaB.Subendothelial extracellular matrixNuclear factorPAK activationBasement membrane
2005
Integrin Activation and Matrix Binding Mediate Cellular Responses to Mechanical Stretch*
Katsumi A, Naoe T, Matsushita T, Kaibuchi K, Schwartz MA. Integrin Activation and Matrix Binding Mediate Cellular Responses to Mechanical Stretch*. Journal Of Biological Chemistry 2005, 280: 16546-16549. PMID: 15760908, DOI: 10.1074/jbc.c400455200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell AdhesionEnzyme ActivationEnzyme InhibitorsExtracellular MatrixExtracellular Signal-Regulated MAP KinasesIntegrin alphaVbeta3IntegrinsJNK Mitogen-Activated Protein KinasesLigandsMAP Kinase Kinase 4MiceMitogen-Activated Protein Kinase KinasesNIH 3T3 CellsPhosphatidylinositol 3-KinasesPhosphorylationProtein ConformationSignal TransductionStress, MechanicalTime FactorsConceptsIntegrin activationExtracellular matrix proteinsRole of integrinsConformational activationBiochemical signalsNIH3T3 cellsMolecular mechanismsCellular responsesMatrix proteinsExtracellular matrixCell growthMechanical stretch stimulationIntegrin alphavbeta3IntegrinsMechanical tensionMechanical stretchCritical determinantStretch stimulationActivationPhosphoinositolMechanotransductionJNKProteinApoptosisDifferentiation
2004
p21-activated Kinase Regulates Endothelial Permeability through Modulation of Contractility*
Stockton RA, Schaefer E, Schwartz MA. p21-activated Kinase Regulates Endothelial Permeability through Modulation of Contractility*. Journal Of Biological Chemistry 2004, 279: 46621-46630. PMID: 15333633, DOI: 10.1074/jbc.m408877200.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsBlotting, WesternCattleCell CommunicationCells, CulturedCytokinesCytoskeletonEndothelium, VascularEnzyme ActivationHumansInflammationIschemiaMicroscopy, FluorescenceMuscle ContractionMyosin Light ChainsP21-Activated KinasesPeptidesPhosphorylationProtein Serine-Threonine KinasesProtein TransportThrombinTime FactorsTransfectionUmbilical VeinsConceptsP21-activated kinaseClose cell-cell associationsEndothelial cell-cell junctionsCell-cell junctionsActin stress fibersCell-cell associationsSuitable drug targetsGrowth factorMyosin phosphorylationHuman umbilical vein endothelial cellsCentral regulatorStress fibersUmbilical vein endothelial cellsEndothelial cellsPAK activationDrug targetsVein endothelial cellsCell contractilityMultiple growth factorsParacellular poresEndothelial permeabilityPhosphorylationPathological processesPathological conditionsPotential role
2003
Biologically active fragment of a human tRNA synthetase inhibits fluid shear stress-activated responses of endothelial cells
Tzima E, Reader J, Irani-Tehrani M, Ewalt K, Schwartz M, Schimmel P. Biologically active fragment of a human tRNA synthetase inhibits fluid shear stress-activated responses of endothelial cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 14903-14907. PMID: 14630953, PMCID: PMC299850, DOI: 10.1073/pnas.2436330100.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAnimalsCattleCytoskeletonEndothelium, VascularGenetic VectorsHumansLuciferasesMicroscopy, FluorescenceMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Mitogen-Activated Protein KinasesNeovascularization, PathologicNitric Oxide SynthaseProtein Serine-Threonine KinasesProtein Structure, TertiaryProto-Oncogene ProteinsProto-Oncogene Proteins c-aktSignal TransductionStress, MechanicalTemperatureTime FactorsTranscription, GeneticConceptsT2-TrpRSStress-responsive gene expressionHuman tryptophanyl-tRNA synthetaseStress-responsive genesExtracellular signal-regulated kinase 1/2Growth factor stimulationHuman tRNA SynthetaseSignal-regulated kinase 1/2Natural splice variantProtein kinase BShear stress-responsive genesVascular endothelial growth factor (VEGF) stimulationTryptophanyl-tRNA synthetaseVascular homeostasisGrowth factor-induced angiogenesisVascular endothelial growth factor-induced angiogenesisCytoskeletal reorganizationProtein kinaseFactor stimulationAngiogenesis-related activitiesGene expressionKinase BKinase 1/2TRNA synthetaseEndothelial cell responses
2002
Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression
Tzima E, Del Pozo MA, Kiosses WB, Mohamed SA, Li S, Chien S, Schwartz MA. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. The EMBO Journal 2002, 21: 6791-6800. PMID: 12486000, PMCID: PMC139108, DOI: 10.1093/emboj/cdf688.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCattleCell AdhesionCells, CulturedCytoskeletonDimerizationEnergy TransferEnzyme ActivationGene Expression RegulationGenes, DominantGreen Fluorescent ProteinsGTP PhosphohydrolasesIntercellular Adhesion Molecule-1LeukocytesLuciferasesLuminescent ProteinsMicroscopy, FluorescenceNF-kappa BPlasmidsProtein TransportRac GTP-Binding ProteinsRac1 GTP-Binding ProteinSpectrometry, FluorescenceStress, MechanicalTime FactorsTransfectionConceptsGene expressionFluorescence resonance energy transferSmall GTPase RacActivation of Rac1Endothelial cellsFocal adhesionsCytoskeletal organizationCytoskeletal reorganizationGTPase RacRac1 activationAdhesion receptorsResonance energy transferExtracellular matrixNuclear factor-kappaBNew integrinRac1Hemodynamic shear stressSubsequent expressionFactor-kappaBCell alignmentExpressionUnifying modelHemodynamic forcesCell adhesion molecule-1CellsEffects of cell tension on the small GTPase Rac
Katsumi A, Milanini J, Kiosses WB, del Pozo MA, Kaunas R, Chien S, Hahn KM, Schwartz MA. Effects of cell tension on the small GTPase Rac. Journal Of Cell Biology 2002, 158: 153-164. PMID: 12105187, PMCID: PMC2173027, DOI: 10.1083/jcb.200201105.Peer-Reviewed Original ResearchMeSH KeywordsAmidesAnimalsAzepinesCell LineCell MembraneCell MovementCollagenDose-Response Relationship, DrugEnergy TransferGTP PhosphohydrolasesGuanine Nucleotide Exchange FactorsMicroscopy, FluorescenceMicroscopy, Phase-ContrastMicroscopy, VideoNaphthalenesNeoplasm ProteinsProteinsPseudopodiaPyridinesRac GTP-Binding ProteinsRatsStress, MechanicalTime FactorsT-Lymphoma Invasion and Metastasis-inducing Protein 1Transfection
2001
Timing of cyclin D1 expression within G1 phase is controlled by Rho
Welsh C, Roovers K, Villanueva J, Liu Y, Schwartz M, Assoian R. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nature Cell Biology 2001, 3: 950-957. PMID: 11715015, DOI: 10.1038/ncb1101-950.Peer-Reviewed Original ResearchActivation of integrins in endothelial cells by fluid shear stress mediates Rho‐dependent cytoskeletal alignment
Tzima E, del Pozo M, Shattil S, Chien S, Schwartz M. Activation of integrins in endothelial cells by fluid shear stress mediates Rho‐dependent cytoskeletal alignment. The EMBO Journal 2001, 20: 4639-4647. PMID: 11532928, PMCID: PMC125600, DOI: 10.1093/emboj/20.17.4639.Peer-Reviewed Original ResearchAnimalsAortaCattleCells, CulturedCulture Media, Serum-FreeCytoskeletonEndothelium, VascularExtracellular Matrix ProteinsFibronectinsGreen Fluorescent ProteinsIntegrinsKineticsLuminescent ProteinsProtein ConformationReceptors, VitronectinRecombinant ProteinsRho GTP-Binding ProteinsStress, MechanicalTime FactorsTransfection
2000
Cell Adhesion Regulates Ubiquitin-mediated Degradation of the Platelet-derived Growth Factor Receptor β*
Baron V, Schwartz M. Cell Adhesion Regulates Ubiquitin-mediated Degradation of the Platelet-derived Growth Factor Receptor β*. Journal Of Biological Chemistry 2000, 275: 39318-39323. PMID: 11007771, DOI: 10.1074/jbc.m003618200.Peer-Reviewed Original ResearchMeSH KeywordsAdenoviridaeAnimalsBlotting, WesternCell AdhesionCell DivisionCell LineCells, CulturedCysteine EndopeptidasesDose-Response Relationship, DrugDown-RegulationDynaminsEmbryo, MammalianEnzyme InhibitorsFibroblastsFibronectinsGTP PhosphohydrolasesHumansLigandsLysosomesMiceMultienzyme ComplexesPhosphorylationProteasome Endopeptidase ComplexProtein-Tyrosine KinasesReceptors, Platelet-Derived Growth FactorTemperatureTime FactorsTrypsinTyrphostinsUbiquitinsConceptsUbiquitin-dependent pathwayIntegrin-mediated adhesionPlatelet-derived growth factor receptor βPlatelet-derived growth factor receptor betaTyrosine kinase activityGrowth factor receptor βGrowth factor receptor betaProteasome pathwayDetachment of cellsReceptor autophosphorylationKinase activityCellular desensitizationPrimary fibroblastsExtracellular matrixCell detachmentAutophosphorylationProtein levelsCell linesPDGFGrowth factorReceptor betaReceptor βCellsPathwayRecent studies
1999
Integrin-dependent Tyrosine Phosphorylation and Growth Regulation by Vav
Yron I, Deckert M, Reff M, Munshi A, Schwartz M, Altman A. Integrin-dependent Tyrosine Phosphorylation and Growth Regulation by Vav. Cell Communication & Adhesion 1999, 7: 1-11. PMID: 10228731, DOI: 10.3109/15419069909034388.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsCell AdhesionCell Adhesion MoleculesCell DivisionCHO CellsCricetinaeCytoskeletal ProteinsFibronectinsFocal Adhesion Kinase 1Focal Adhesion Protein-Tyrosine KinasesHumansIntegrin beta1Jurkat CellsKineticsOncogene ProteinsPaxillinPhosphoproteinsPhosphorylationPrecipitin TestsProtein-Tyrosine KinasesProto-Oncogene MasProto-Oncogene Proteins c-vavTime FactorsTransfectionTyrosineConceptsRapid phosphorylationIntegrin-dependent tyrosine phosphorylationAdhesion-dependent mannerExchange factor domainB cell antigen receptorAdhesion-dependent increaseIntegrin signal transductionFocal adhesion kinaseExtent of phosphorylationCell surface stimuliCell antigen receptorJurkat T cellsTriton-insoluble fractionVav overexpressionSmall GTPasesBeta 1 integrinRho familyRho GTPasesCytoskeletal organizationSignal transductionAdhesion kinaseTyrosine phosphorylationStress fibersGrowth regulationFactor domain