2023
Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle
Bera M, Radhakrishnan A, Coleman J, Sundaram R, Ramakrishnan S, Pincet F, Rothman J. Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2311484120. PMID: 37903271, PMCID: PMC10636311, DOI: 10.1073/pnas.2311484120.Peer-Reviewed Original ResearchConceptsSpecific molecular functionsSynaptic vesicle protein synaptophysinTarget membrane bilayerSensor synaptotagminSNARE proteinsMolecular functionsMembrane proteinsSNAREpinsReceptor vesiclesSingle-molecule measurementsGene knockoutMembrane bilayerLipid bilayersProtein synaptophysinVesiclesDetergent extractsHexamer structureSYPMechanism of actionProteinAssemblyChaperonesSynaptotagminExocytosisBilayers
2018
High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis
Ramakrishnan S, Gohlke A, Li F, Coleman J, Xu W, Rothman JE, Pincet F. High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis. Langmuir 2018, 34: 5849-5859. PMID: 29694054, DOI: 10.1021/acs.langmuir.8b00116.Peer-Reviewed Original ResearchConceptsMembrane fusionFusion eventsSoluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteinsSNARE-dependent membrane fusionIndividual vesicle fusion eventsFactor attachment protein receptor proteinsN-ethylmaleimide-sensitive factor attachment protein receptor proteinsT-SNARE proteinsSingle-vesicle fusionProtein receptor proteinsVesicle fusion eventsMobility of proteinsVesicle dockingContent releaseVesicle fusionHigh-throughput monitoringPlanar membranesReceptor proteinLipid mixingProteinLipid bilayersVesiclesCorrect reconstitutionMembraneAqueous compartmentVesicle Tubulation with Self‐Assembling DNA Nanosprings
Grome M, Zhang Z, Pincet F, Lin C. Vesicle Tubulation with Self‐Assembling DNA Nanosprings. Angewandte Chemie 2018, 130: 5428-5432. DOI: 10.1002/ange.201800141.Peer-Reviewed Original ResearchMembrane-deforming proteinsDNA origami designMembrane tubulationMembrane tubulesMembrane curvatureVesicle tubulationMembrane surface coverageDNA structureLipid bilayersTubulationNanospringsTube morphologyIntricate interplayArtificial nanomachinesVesicle deformationSpherical vesiclesNanotechnologyMajor goalProteinDNAVesiclesNanomachinesBioengineeringDetergentsMorphology
2016
A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion
Xu W, Nathwani B, Lin C, Wang J, Karatekin E, Pincet F, Shih W, Rothman JE. A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. Journal Of The American Chemical Society 2016, 138: 4439-4447. PMID: 26938705, PMCID: PMC4950518, DOI: 10.1021/jacs.5b13107.Peer-Reviewed Original ResearchConceptsMembrane fusionSoluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexCore molecular machineryMembrane fusion eventsProtein receptor complexMembrane fusion processMolecular machineryDNA origami platformTarget membraneAuxiliary proteinsIntracellular communicationDocking stepSingle-event levelReceptor complexLipid mixingSmall unilamellar vesiclesLipid bilayersSnareFundamental processesVesiclesUnilamellar vesiclesTraffickingMachineryProteinFusion
2013
Preparation and characterization of SNARE-containing nanodiscs and direct study of cargo release through fusion pores
Shi L, Howan K, Shen QT, Wang YJ, Rothman JE, Pincet F. Preparation and characterization of SNARE-containing nanodiscs and direct study of cargo release through fusion pores. Nature Protocols 2013, 8: 935-948. PMID: 23598444, DOI: 10.1038/nprot.2013.048.Peer-Reviewed Original ResearchConceptsFusion eventsScaffold proteinFusion poreMembrane scaffold proteinFluorescent lipidFluorescence-based approachFusion machineryAccessible lipidsCognate proteinNanodiscsPore expansionLipid bilayersProteinCargo releaseCargoLipidsPlate readerVAMP2MachineryFluorescenceSnareEncapsulated cargoDirect studyReleaseAssays
2008
The Surface Force Apparatus to Reveal the Energetics of Biomolecules Assembly. Application to DNA Bases Pairing and SNARE Fusion Proteins Folding
Perez E, Li F, Tareste D, Pincet F. The Surface Force Apparatus to Reveal the Energetics of Biomolecules Assembly. Application to DNA Bases Pairing and SNARE Fusion Proteins Folding. Cellular And Molecular Bioengineering 2008, 1: 240. DOI: 10.1007/s12195-008-0025-7.Peer-Reviewed Original ResearchSNARE proteinsLipid bilayersMolecular binding energyIntracellular fusion eventsSurface force apparatusIntermediate assembly statesSNAREpin assemblyNanoscale resolutionBiomolecule assemblyForce apparatusSFA measurementsBiological moleculesBinding energiesLipid headgroupsFusion eventsMembrane fusionFusion proteinInteraction energyConformational changesAssembly stateAdhesion forceDNA basesProteinBilayersEnergy
2007
Confinement Free Energy of Surfaces Bearing End-Grafted Polymers in the Mushroom Regime and Local Measurement of the Polymer Density
Li F, Pincet F. Confinement Free Energy of Surfaces Bearing End-Grafted Polymers in the Mushroom Regime and Local Measurement of the Polymer Density. Langmuir 2007, 23: 12541-12548. PMID: 17988162, DOI: 10.1021/la7021374.Peer-Reviewed Original ResearchConceptsPolymer chainsMushroom regimeFree energyEnd-Grafted PolymersSurface force measurementsSingle polymer chainSurface force apparatusEnd-tethered polymer chainsInteraction free energyGrafted polymersForce apparatusPolymer densityForce profilesPolymersConfinement free energyPolymer theoryLipid bilayersIdentical surfacesMushroomlike structuresFree energy approximationForce measurementsSurfacePlanar surfaceGood precisionChainEnergetics and dynamics of SNAREpin folding across lipid bilayers
Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nature Structural & Molecular Biology 2007, 14: 890-896. PMID: 17906638, DOI: 10.1038/nsmb1310.Peer-Reviewed Original ResearchHydrophobic Forces and Hydrogen Bonds in the Adhesion between Retinoid-Coated Surfaces
Tareste D, Pincet F, Lebeau L, Perez É. Hydrophobic Forces and Hydrogen Bonds in the Adhesion between Retinoid-Coated Surfaces. Langmuir 2007, 23: 3225-3229. PMID: 17266339, DOI: 10.1021/la0629779.Peer-Reviewed Original ResearchConceptsHydrophobic forcesHydrogen bondsPure waterShort-range attractive forcesLipid layerHydrophilic headgroupLong-range attractionHydrophobic chainsTris bufferHydrophobic effectLipid monolayersApolar characterMolecular interactionsAttractive forceBondsLipid bilayersExponential forceHeadgroupsNew classForce measurementsDistance profilesWaterBufferInteractionMonolayers
1999
Bilayers of neutral lipids bear a small but significant charge
Pincet F, Cribier S, Perez E. Bilayers of neutral lipids bear a small but significant charge. The European Physical Journal B 1999, 11: 127-130. DOI: 10.1007/bf03219162.Peer-Reviewed Original ResearchNeutral lipid bilayersLipid bilayersSurface force measurementsPure waterPhosphatidyl choline bilayerAqueous mediaElectrophoretic measurementsHigh salt concentrationsSurface forcesNegative chargeSignificant chargeWeak forcesAdhesion energySalt concentrationSalt solutionRepulsionBilayersLess chargeWeak repulsionSaltChargeForce measurementsSmall amountWater