2023
Use of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis
Huet-Calderwood C, Rivera-Molina F, Toomre D, Calderwood D. Use of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis. Methods In Molecular Biology 2023, 2608: 17-38. PMID: 36653699, PMCID: PMC9999384, DOI: 10.1007/978-1-0716-2887-4_2.ChaptersConceptsΒ1 integrinTotal internal reflection fluorescence microscopyNormal cell adhesionIntegrin adhesion receptorsReflection fluorescence microscopyAdhesion receptorsCell adhesionEndocytosisFluorescence microscopyExocytosisIntegrinsCellsHaloTagPHluorinIntracellular labelingEctoPhotobleachingTagsReceptorsChaseFluorescentAdhesionLabelingMigration
2022
Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions
Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nature Reviews Molecular Cell Biology 2022, 24: 142-161. PMID: 36168065, PMCID: PMC9892292, DOI: 10.1038/s41580-022-00531-5.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell AdhesionCytoskeletonExtracellular MatrixFocal AdhesionsIntegrinsSignal TransductionTissue AdhesionsConceptsExtracellular matrixCell-ECM adhesionCell-ECM interactionsLocal extracellular matrixAdhesion maturationAdhesion complexesAnimal cellsBiochemical signalingTransmembrane receptorsAdhesion structuresCell shapeIntegrin familyMolecular natureAge-related dysfunctionAdvanced imaging approachesCharacterization of rearrangementsMechanical forcesSignalingTissue formationAdhesionCytoskeletonMechanoregulationImmune responseImaging approachImproved understanding
2020
Chapter 22: Structural and signaling functions of integrins
Kadry YA, Calderwood DA. Chapter 22: Structural and signaling functions of integrins. Biochimica Et Biophysica Acta (BBA) - Biomembranes 2020, 1862: 183206. PMID: 31991120, PMCID: PMC7063833, DOI: 10.1016/j.bbamem.2020.183206.Peer-Reviewed Original ResearchConceptsFunction of integrinsAbility of integrinsTransmembrane adhesion receptorsNon-redundant functionsDifferent integrin heterodimersExtracellular matrix proteinsComplex structural rearrangementsDiverse downstreamCytoskeletal complexMetazoan lifeExtracellular environmentΒ-subunitAdhesion receptorsIntegrin heterodimersIntegrin familyMatrix proteinsCell adhesionIntegrinsStructural rearrangementsHeterodimersRecent advancesSubunitsSignalingProteinFunction
2018
Kindlin-2 interacts with a highly conserved surface of ILK to regulate focal adhesion localization and cell spreading
Kadry YA, Huet-Calderwood C, Simon B, Calderwood DA. Kindlin-2 interacts with a highly conserved surface of ILK to regulate focal adhesion localization and cell spreading. Journal Of Cell Science 2018, 131: jcs221184. PMID: 30254023, PMCID: PMC6215391, DOI: 10.1242/jcs.221184.Peer-Reviewed Original ResearchConceptsIntegrin-linked kinaseFocal adhesion localizationKindlin-2Cell spreadingIntegrin-mediated signalingILK bindingILK mutantPseudokinase domainIntegrin signalingKnockdown cellsAxis downstreamC-lobeCell morphologyMutantsSignalingCentral rolePKDComplete understandingLocalizationFirst personKinaseAdaptorSitesSpeciesIntegrins
2015
Regulation of integrin-mediated adhesions
Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Current Opinion In Cell Biology 2015, 36: 41-47. PMID: 26189062, PMCID: PMC4639423, DOI: 10.1016/j.ceb.2015.06.009.Peer-Reviewed Original ResearchConceptsIntegrin-mediated adhesionHeterodimeric transmembrane adhesion receptorsShort cytoplasmic tailTransmembrane adhesion receptorsSpecific intracellular proteinsClustering of integrinsMetazoan developmentActin cytoskeletonExtracellular ligandsCytoplasmic tailIntracellular traffickingExtracellular environmentIntracellular proteinsAdhesion receptorsAdhesive structuresIntegrin receptorsCell membraneRelay signalsIntegrinsEssential roleMechanical forcesCell attachmentAdhesionRecent advancesCytoskeletonPAK6 targets to cell–cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escape
Morse EM, Sun X, Olberding JR, Ha BH, Boggon TJ, Calderwood DA. PAK6 targets to cell–cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escape. Journal Of Cell Science 2015, 129: 380-393. PMID: 26598554, PMCID: PMC4732285, DOI: 10.1242/jcs.177493.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAntigens, CDCadherinsCdc42 GTP-Binding ProteinCell AdhesionCell Line, TumorEpithelial CellsHEK293 CellsHumansIntercellular JunctionsMolecular Sequence DataP21-Activated KinasesProtein BindingProtein Interaction Domains and MotifsProtein Sorting SignalsProtein TransportConceptsCell-cell adhesionN-terminusCdc42/Rac interactive binding (CRIB) domainSerine/threonine kinaseP21-activated kinase (PAK) familyCdc42-dependent mannerPolybasic regionThreonine kinaseCdc42 knockdownKinase familyBinding domainsKinase activityImportant regulatorCell adhesionPAK6Broader rolePAKAdhesionTargetingCdc42PAK1KinaseKnockdownRegulatorMutations
2014
The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering
Ellis SJ, Lostchuck E, Goult BT, Bouaouina M, Fairchild MJ, López-Ceballos P, Calderwood DA, Tanentzapf G. The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering. PLOS Genetics 2014, 10: e1004756. PMID: 25393120, PMCID: PMC4230843, DOI: 10.1371/journal.pgen.1004756.Peer-Reviewed Original ResearchPodocyte-associated talin1 is critical for glomerular filtration barrier maintenance
Tian X, Kim JJ, Monkley SM, Gotoh N, Nandez R, Soda K, Inoue K, Balkin DM, Hassan H, Son SH, Lee Y, Moeckel G, Calderwood DA, Holzman LB, Critchley DR, Zent R, Reiser J, Ishibe S. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. Journal Of Clinical Investigation 2014, 124: 1098-1113. PMID: 24531545, PMCID: PMC3934159, DOI: 10.1172/jci69778.Peer-Reviewed Original ResearchConceptsNephrotic syndromeFoot process effacementLoss of talin1Glomerular filtration barrierGlomerular injuryMurine modelProcess effacementKidney's glomerular filtration barrierFiltration barrierGlomerular basement membraneSevere proteinuriaKidney failurePharmacologic inhibitionSyndromeBarrier maintenanceCalpain activityIntegrin activationEpithelial cellsPodocytesModest reductionΒ1 integrin activationBasement membranePathogenesisInjuryCytoskeletal protein talin1
2013
Talins and kindlins: partners in integrin-mediated adhesion
Calderwood DA, Campbell ID, Critchley DR. Talins and kindlins: partners in integrin-mediated adhesion. Nature Reviews Molecular Cell Biology 2013, 14: 503-517. PMID: 23860236, PMCID: PMC4116690, DOI: 10.1038/nrm3624.Peer-Reviewed Original ResearchConceptsIntegrin activationAdhesion complexesTalin headAmino-terminal headTalin-vinculin interactionsIntegrin cytoplasmic domainIntegrin activation pathwaysIntegrin extracellular domainIntegrin subunitsShort cytoplasmic tailDefective integrin activationPost-translational modificationsFull-length talinTalin-integrin interactionActin-binding siteImportant control pointTransmit chemicalTalin autoinhibitionDisease-causing mutationsKey PointsIntegrinsActin cytoskeletonProtein talinExtracellular ligandsFocal adhesionsIntegrin tails
2012
FAK promotes recruitment of talin to nascent adhesions to control cell motility
Lawson C, Lim ST, Uryu S, Chen XL, Calderwood DA, Schlaepfer DD. FAK promotes recruitment of talin to nascent adhesions to control cell motility. Journal Of Cell Biology 2012, 196: 223-232. PMID: 22270917, PMCID: PMC3265949, DOI: 10.1083/jcb.201108078.Peer-Reviewed Original ResearchConceptsFocal adhesion kinaseNascent adhesionsCell motilityCell migrationRecruitment of talinCytoskeletal protein talinTension-independent mannerCytoskeletal-associated proteinDirect binding siteTalin associationProtein talinFAK recruitmentAdhesion dynamicsAdhesion kinaseFAK localizationTalinAdhesion sitesTalin cleavageIntegrin receptorsΒ1 integrinPoint mutationsNew adhesionsBinding sitesA Conserved Lipid-binding Loop in the Kindlin FERM F1 Domain Is Required for Kindlin-mediated αIIbβ3 Integrin Coactivation*
Bouaouina M, Goult BT, Huet-Calderwood C, Bate N, Brahme NN, Barsukov IL, Critchley DR, Calderwood DA. A Conserved Lipid-binding Loop in the Kindlin FERM F1 Domain Is Required for Kindlin-mediated αIIbβ3 Integrin Coactivation*. Journal Of Biological Chemistry 2012, 287: 6979-6990. PMID: 22235127, PMCID: PMC3293583, DOI: 10.1074/jbc.m111.330845.Peer-Reviewed Original ResearchConceptsIntegrin β tailsTalin FERM domainFERM domainFocal adhesionsΒ tailTalin headHeterodimeric integrin adhesion receptorsIntegrin activationKindlin-1Membrane-binding motifFERM domain proteinsIntegrin β subunitsShort cytoplasmic tailAcidic membrane phospholipidsIntegrin adhesion receptorsΑIIbβ3 integrin activationDomain proteinsIntegrin tailsCytoplasmic domainCytoplasmic tailKindlinKindlin familyDomain interactionsPhospholipid head groupsPolylysine motifFilamin A controls matrix metalloproteinase activity and regulates cell invasion in human fibrosarcoma cells
Baldassarre M, Razinia Z, Brahme NN, Buccione R, Calderwood DA. Filamin A controls matrix metalloproteinase activity and regulates cell invasion in human fibrosarcoma cells. Journal Of Cell Science 2012, 125: 3858-3869. PMID: 22595522, PMCID: PMC3462082, DOI: 10.1242/jcs.104018.Peer-Reviewed Original ResearchMeSH KeywordsActinsCell AdhesionCell Line, TumorCell MovementContractile ProteinsEnzyme ActivationExtracellular MatrixFibrosarcomaFilaminsGene Knockdown TechniquesHumansIntegrinsMatrix Metalloproteinase 14Matrix Metalloproteinase 2Microfilament ProteinsNeoplasm InvasivenessPhenotypeProtein Structure, TertiaryConceptsFilamin AActin cytoskeletonCell invasionActin-binding domainCell surface adhesion proteinsControls cell motilityActin-binding proteinsIntegrin adhesion receptorsRandom cell migrationAbility of cellsArray of intracellularBreast cancer lossSurface adhesion proteinsHuman fibrosarcoma cellsExtracellular matrix degradationMatrix metalloproteinase activityFilamin expressionKnockdown cellsAdhesion proteinsCell motilityMetalloproteinase activityActin filamentsAdhesion receptorsFilaminECM remodelingNanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension
Coyer SR, Singh A, Dumbauld DW, Calderwood DA, Craig SW, Delamarche E, García AJ. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. Journal Of Cell Science 2012, 125: 5110-5123. PMID: 22899715, PMCID: PMC3533393, DOI: 10.1242/jcs.108035.Peer-Reviewed Original ResearchConceptsFocal adhesionsForce transductionFA assemblyCytoskeletal tensionExtracellular matrixIntegrin activationFocal adhesion assemblyVinculin head domainExpression of talinNon-migrating cellsVinculin mutantsCytoskeleton tensionAdhesion assemblyECM ligandsMyosin contractilityAdhesive areaStable assemblyIntracellular pathwaysTransductionAssemblyStructural linkPathwayStructural linkagesTraction forceCellsFunctional differences between kindlin-1 and kindlin-2 in keratinocytes
Bandyopadhyay A, Rothschild G, Kim S, Calderwood DA, Raghavan S. Functional differences between kindlin-1 and kindlin-2 in keratinocytes. Journal Of Cell Science 2012, 125: 2172-2184. PMID: 22328497, PMCID: PMC3367939, DOI: 10.1242/jcs.096214.Peer-Reviewed Original ResearchConceptsFocal adhesionsKindlin-2Kindlin-1Cell spreadingPeripheral focal adhesionsIntegrin β1Wild-type cellsUnexpected functional consequencesIntegrin β6Wild-type keratinocytesCytoplasmic tailNull keratinocytesKindlinNull cellsFunctional consequencesDirect interactionFunctional differencesUnique functionRelated integrinsIntegrinsCellsAdhesionKeratinocytesIntegrin αvβ6Knockdown
2011
Functional and Structural Insights into ASB2α, a Novel Regulator of Integrin-dependent Adhesion of Hematopoietic Cells*
Lamsoul I, Burande CF, Razinia Z, Houles TC, Menoret D, Baldassarre M, Erard M, Moog-Lutz C, Calderwood DA, Lutz PG. Functional and Structural Insights into ASB2α, a Novel Regulator of Integrin-dependent Adhesion of Hematopoietic Cells*. Journal Of Biological Chemistry 2011, 286: 30571-30581. PMID: 21737450, PMCID: PMC3162417, DOI: 10.1074/jbc.m111.220921.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid MotifsAnimalsCarrier ProteinsCell AdhesionFibronectinsGene Expression RegulationHeLa CellsHematopoietic Stem CellsHumansIntegrinsMiceMusclesNIH 3T3 CellsProtein BindingProtein Structure, TertiarySubstrate SpecificitySuppressor of Cytokine Signaling ProteinsConceptsN-terminal regionHematopoietic cellsE3 ubiquitin ligase complexE3 ubiquitin ligase functionShort N-terminal regionUbiquitin ligase complexUbiquitin ligase functionAcid-responsive genesIntegrin-dependent adhesionRetinoic acid-responsive geneCell fateLigase complexSpecificity subunitLigase functionResponsive genesLeukemia cellsProteasomal degradationNovel regulatorFilamin A.Myogenic differentiationStructural insightsASB2αΒ-integrinAcute promyelocytic leukemia cellsStructural homologyKindlins
Bouaouina M, Calderwood DA. Kindlins. Current Biology 2011, 21: r99-r101. PMID: 21300280, DOI: 10.1016/j.cub.2010.12.002.Peer-Reviewed Original Research
2010
Structure of a double ubiquitin‐like domain in the talin head: a role in integrin activation
Goult BT, Bouaouina M, Elliott PR, Bate N, Patel B, Gingras AR, Grossmann JG, Roberts GC, Calderwood DA, Critchley DR, Barsukov IL. Structure of a double ubiquitin‐like domain in the talin head: a role in integrin activation. The EMBO Journal 2010, 29: 1069-1080. PMID: 20150896, PMCID: PMC2845276, DOI: 10.1038/emboj.2010.4.Peer-Reviewed Original Research
2008
Integrin signalling at a glance
Harburger DS, Calderwood DA. Integrin signalling at a glance. Journal Of Cell Science 2008, 122: 159-163. PMID: 19118207, PMCID: PMC2714413, DOI: 10.1242/jcs.018093.Peer-Reviewed Original ResearchJAM-L–mediated leukocyte adhesion to endothelial cells is regulated in cis by α4β1 integrin activation
Luissint AC, Lutz PG, Calderwood DA, Couraud PO, Bourdoulous S. JAM-L–mediated leukocyte adhesion to endothelial cells is regulated in cis by α4β1 integrin activation. Journal Of Cell Biology 2008, 183: 1159-1173. PMID: 19064666, PMCID: PMC2600739, DOI: 10.1083/jcb.200805061.Peer-Reviewed Original ResearchConceptsJunctional adhesion moleculeIntegrin activationIntegrin-dependent adhesionIntegrin VLA-4Endothelial cellsAdhesion moleculesEpithelial adhesion moleculesJAM familyHeterophilic interactionsCis dimerizationDimerization stateVLA-4Monomeric formLeukocyte integrin VLA-4CellsActivationAdhesionComplexesProteinMoleculesDimerizationLeukocyte adhesionRecruitmentAccumulationFamilyASB2 targets filamins A and B to proteasomal degradation
Heuzé ML, Lamsoul I, Baldassarre M, Lad Y, Lévêque S, Razinia Z, Moog-Lutz C, Calderwood DA, Lutz PG. ASB2 targets filamins A and B to proteasomal degradation. Blood 2008, 112: 5130-5140. PMID: 18799729, PMCID: PMC2597609, DOI: 10.1182/blood-2007-12-128744.Peer-Reviewed Original ResearchConceptsAnkyrin repeat-containing proteinFilamin AE3 ubiquitin ligase complexActin-binding protein filamin AFilamin degradationRepeat-containing proteinUbiquitin ligase complexSeries of proliferationHematopoietic cell differentiationProtein filamin AAcid-induced differentiationSuppressor of cytokineLigase complexSpecificity subunitLeukemia cellsHematopoietic differentiationHematopoietic progenitor cellsProteasomal degradationMolecular basisAcute promyelocytic leukemia cellsSpecific proteinsCell spreadingPromyelocytic leukemia cellsArrest of differentiationCell differentiation