2020
Isoform‐resolved correlation analysis between mRNA abundance regulation and protein level degradation
Salovska B, Zhu H, Gandhi T, Frank M, Li W, Rosenberger G, Wu C, Germain P, Zhou H, Hodny Z, Reiter L, Liu Y. Isoform‐resolved correlation analysis between mRNA abundance regulation and protein level degradation. Molecular Systems Biology 2020, 16: msb199170. PMID: 32175694, PMCID: PMC7073818, DOI: 10.15252/msb.20199170.Peer-Reviewed Original ResearchConceptsProtein degradationGenome-wide correlation analysisGene dosage variationProtein abundance levelsStable isotope-labeled amino acidsIndividual protein isoformsSpecific biological processesAlternative splicing isoformsData-independent acquisition mass spectrometryIsotope-labeled amino acidsAcquisition mass spectrometryProtein degradation ratesIntron retentionCellular functionsProtein isoformsSplicing isoformsCellular organellesTranscriptome variabilitySame geneTurnover controlRegulatory mechanismsBiological processesSpecific mRNAsTight associationAbundance levels
2016
On the Dependency of Cellular Protein Levels on mRNA Abundance
Liu Y, Beyer A, Aebersold R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell 2016, 165: 535-550. PMID: 27104977, DOI: 10.1016/j.cell.2016.03.014.Peer-Reviewed Original ResearchConceptsProtein levelsGene expression regulationCellular protein levelsLong‐term state changeGenotype-phenotype relationshipsExpression regulationMRNA fluctuationsProtein biosynthesisGenomic informationProteomic profilingTranscript levelsGene expressionBiological processesMRNA abundanceLife science researchMRNA levelsShort-term adaptationComplete understandingProtein concentrationBiosynthesisCentral importanceLocal availabilityTranscriptsTemporal variationProtein
2015
Quantitative variability of 342 plasma proteins in a human twin population
Liu Y, Buil A, Collins BC, Gillet L, Blum LC, Cheng LY, Vitek O, Mouritsen J, Lachance G, Spector TD, Dermitzakis ET, Aebersold R. Quantitative variability of 342 plasma proteins in a human twin population. Molecular Systems Biology 2015, 11: msb145728. PMID: 25652787, PMCID: PMC4358658, DOI: 10.15252/msb.20145728.Peer-Reviewed Original ResearchConceptsQuantitative variabilityUnique plasma proteinsBlood-based biomarker studiesGenetic controlBiological processesDifferent proteinsDifferent traitsPlasma proteinsProteinAbundance variabilityProtein levelsHuman populationMass spectrometry techniquesSpecific plasma proteinsHuman plasma proteinsGenesRelative contributionTraitsHeritabilitySpectrometry techniquesTwin study designDifferent patternsPopulationClinical biomarkersVariability
2014
Glycoproteomic Analysis of Prostate Cancer Tissues by SWATH Mass Spectrometry Discovers N-acylethanolamine Acid Amidase and Protein Tyrosine Kinase 7 as Signatures for Tumor Aggressiveness*
Liu Y, Chen J, Sethi A, Li QK, Chen L, Collins B, Gillet LC, Wollscheid B, Zhang H, Aebersold R. Glycoproteomic Analysis of Prostate Cancer Tissues by SWATH Mass Spectrometry Discovers N-acylethanolamine Acid Amidase and Protein Tyrosine Kinase 7 as Signatures for Tumor Aggressiveness*. Molecular & Cellular Proteomics 2014, 13: 1753-1768. PMID: 24741114, PMCID: PMC4083113, DOI: 10.1074/mcp.m114.038273.Peer-Reviewed Original ResearchConceptsN-acylethanolamine acid amidaseProtein tyrosine kinase 7Non-aggressive prostate cancerTyrosine kinase 7Prostate cancerKinase 7N-glycositesDiverse biological processesPotential tissue biomarkersAggressive prostate cancerPCa tumor tissuesSWATH mass spectrometryTissue microarray analysisProstate cancer tissuesUrgent clinical needIdentification of biomarkersHuman proteomePCa aggressivenessMicroarray analysisBiological processesPCa casesTissue biomarkersTumor aggressivenessNormal prostateCancer tissues