Featured Publications
Multi-ancestry genome-wide association study of cannabis use disorder yields insight into disease biology and public health implications
Levey D, Galimberti M, Deak J, Wendt F, Bhattacharya A, Koller D, Harrington K, Quaden R, Johnson E, Gupta P, Biradar M, Lam M, Cooke M, Rajagopal V, Empke S, Zhou H, Nunez Y, Kranzler H, Edenberg H, Agrawal A, Smoller J, Lencz T, Hougaard D, Børglum A, Demontis D, Gaziano J, Gandal M, Polimanti R, Stein M, Gelernter J. Multi-ancestry genome-wide association study of cannabis use disorder yields insight into disease biology and public health implications. Nature Genetics 2023, 55: 2094-2103. PMID: 37985822, PMCID: PMC10703690, DOI: 10.1038/s41588-023-01563-z.Peer-Reviewed Original ResearchConceptsSingle nucleotide polymorphism-based heritabilityMulti-ancestry genome-wide association studyAssociation studiesMillion Veteran ProgramGenome-wide association studiesWide significant lociWide association studySignificant lociReference panelSmall populationDisease biologyAncestryAmerican ancestryHeritabilityVeteran ProgramNumerous medical comorbiditiesLung cancer riskRelationship analysisLociBiologyPublic health implicationsEast AsiansPublic health consequencesMedical comorbiditiesCigarette smokingGenome-wide association studies and cross-population meta-analyses investigating short and long sleep duration
Austin-Zimmerman I, Levey D, Giannakopoulou O, Deak J, Galimberti M, Adhikari K, Zhou H, Denaxas S, Irizar H, Kuchenbaecker K, McQuillin A, Concato J, Buysse D, Gaziano J, Gottlieb D, Polimanti R, Stein M, Bramon E, Gelernter J. Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration. Nature Communications 2023, 14: 6059. PMID: 37770476, PMCID: PMC10539313, DOI: 10.1038/s41467-023-41249-y.Peer-Reviewed Original ResearchConceptsAssociation studiesGenome-wide association studiesGenetic correlationsWide association studyLinkage disequilibrium scorePositive genetic correlationSleep traitsIndependent lociMillion Veteran ProgramTraitsAncestryUK BiobankVeteran ProgramMendelian randomisationLociHeritabilitySNPsPhenotypeEast AsiansSimilar patternCardiometabolic phenotypesMulti-ancestry study of the genetics of problematic alcohol use in over 1 million individuals
Zhou H, Kember R, Deak J, Xu H, Toikumo S, Yuan K, Lind P, Farajzadeh L, Wang L, Hatoum A, Johnson J, Lee H, Mallard T, Xu J, Johnston K, Johnson E, Nielsen T, Galimberti M, Dao C, Levey D, Overstreet C, Byrne E, Gillespie N, Gordon S, Hickie I, Whitfield J, Xu K, Zhao H, Huckins L, Davis L, Sanchez-Roige S, Madden P, Heath A, Medland S, Martin N, Ge T, Smoller J, Hougaard D, Børglum A, Demontis D, Krystal J, Gaziano J, Edenberg H, Agrawal A, Justice A, Stein M, Kranzler H, Gelernter J. Multi-ancestry study of the genetics of problematic alcohol use in over 1 million individuals. Nature Medicine 2023, 29: 3184-3192. PMID: 38062264, PMCID: PMC10719093, DOI: 10.1038/s41591-023-02653-5.Peer-Reviewed Original ResearchGenetics of substance use disorders in the era of big data
Gelernter J, Polimanti R. Genetics of substance use disorders in the era of big data. Nature Reviews Genetics 2021, 22: 712-729. PMID: 34211176, PMCID: PMC9210391, DOI: 10.1038/s41576-021-00377-1.Peer-Reviewed Original ResearchGenome-wide association study in individuals of European and African ancestry and multi-trait analysis of opioid use disorder identifies 19 independent genome-wide significant risk loci
Deak JD, Zhou H, Galimberti M, Levey DF, Wendt FR, Sanchez-Roige S, Hatoum AS, Johnson EC, Nunez YZ, Demontis D, Børglum AD, Rajagopal VM, Jennings MV, Kember RL, Justice AC, Edenberg HJ, Agrawal A, Polimanti R, Kranzler HR, Gelernter J. Genome-wide association study in individuals of European and African ancestry and multi-trait analysis of opioid use disorder identifies 19 independent genome-wide significant risk loci. Molecular Psychiatry 2022, 27: 3970-3979. PMID: 35879402, PMCID: PMC9718667, DOI: 10.1038/s41380-022-01709-1.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesGenome-wide significant risk lociAssociation studiesVariant associationsLarge-scale genome-wide association studiesGenetic correlationsSignificant risk lociPsychiatric Genomics ConsortiumMulti-trait analysisPolygenic risk score analysisSingle-variant associationsGWS lociGenetic architectureIndividuals of EuropeanGWS associationsRisk lociGene regionGenomics ConsortiumMillion Veteran ProgramSusceptibility lociAfrican ancestryLociRisk score analysisGenetic informativenessSNPs oneBi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions
Levey DF, Stein MB, Wendt FR, Pathak GA, Zhou H, Aslan M, Quaden R, Harrington KM, Nuñez YZ, Overstreet C, Radhakrishnan K, Sanacora G, McIntosh AM, Shi J, Shringarpure SS, Concato J, Polimanti R, Gelernter J. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nature Neuroscience 2021, 24: 954-963. PMID: 34045744, PMCID: PMC8404304, DOI: 10.1038/s41593-021-00860-2.Peer-Reviewed Original ResearchConceptsTranscriptome-wide association studyMillion Veteran ProgramTranscriptome-wide association study (TWAS) analysisGenomic risk lociComplex psychiatric traitsGenetic architectureRisk lociGene expressionAssociation studiesLikely pathogenicityPsychiatric traitsVeteran ProgramNew therapeutic directionEuropean ancestryNew insightsAncestryUK BiobankAfrican ancestrySubstantial replicationExpressionLarge independent cohortsGWASTherapeutic directionsGenesLociGenome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program
Stein MB, Levey DF, Cheng Z, Wendt FR, Harrington K, Pathak GA, Cho K, Quaden R, Radhakrishnan K, Girgenti MJ, Ho YA, Posner D, Aslan M, Duman RS, Zhao H, Polimanti R, Concato J, Gelernter J. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program. Nature Genetics 2021, 53: 174-184. PMID: 33510476, PMCID: PMC7972521, DOI: 10.1038/s41588-020-00767-x.Peer-Reviewed Original ResearchConceptsGenome-wide association analysisAssociation analysisMillion Veteran ProgramGenomic structural equation modelingSignificant lociGenetic varianceGene expressionDrug repositioning candidatesBiological coherenceVeteran ProgramMultiple testing correctionSymptom phenotypeLociRepositioning candidatesAfrican ancestryHeritabilityPhenotypeAncestryExpressionPTSD symptom factorsRegionSubdomainsEnrichmentGenome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits
Zhou H, Sealock JM, Sanchez-Roige S, Clarke TK, Levey DF, Cheng Z, Li B, Polimanti R, Kember RL, Smith RV, Thygesen JH, Morgan MY, Atkinson SR, Thursz MR, Nyegaard M, Mattheisen M, Børglum AD, Johnson EC, Justice AC, Palmer AA, McQuillin A, Davis LK, Edenberg HJ, Agrawal A, Kranzler HR, Gelernter J. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nature Neuroscience 2020, 23: 809-818. PMID: 32451486, PMCID: PMC7485556, DOI: 10.1038/s41593-020-0643-5.Peer-Reviewed Original ResearchConceptsRegulatory genomic regionsGenome-wide association studiesNovel risk lociEuropean ancestry individualsPolygenic risk score analysisIndependent risk variantsGenetic architectureGenomic regionsRisk lociAssociation studiesGenetic relationshipsRisk genesGenetic correlationsPsychiatric traitsRisk variantsRisk score analysisTraitsGenetic heritabilityYields insightsBiobank samplesMendelian randomizationGenesLociBiologyHeritabilityGenome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans
Gelernter J, Sun N, Polimanti R, Pietrzak R, Levey DF, Bryois J, Lu Q, Hu Y, Li B, Radhakrishnan K, Aslan M, Cheung KH, Li Y, Rajeevan N, Sayward F, Harrington K, Chen Q, Cho K, Pyarajan S, Sullivan PF, Quaden R, Shi Y, Hunter-Zinck H, Gaziano JM, Concato J, Zhao H, Stein MB. Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans. Nature Neuroscience 2019, 22: 1394-1401. PMID: 31358989, PMCID: PMC6953633, DOI: 10.1038/s41593-019-0447-7.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesAssociation studiesHigh linkage disequilibrium regionLinkage disequilibrium regionWide association studyDisequilibrium regionBioinformatics analysisTranscriptomic profilesMillion Veteran ProgramChromosome 17Genetic risk factorsNew insightsUK Biobank dataReexperiencing of traumaStriatal medium spiny neuronsVeteran ProgramSignificant regionsCAMKVEuropean AmericansBiobank dataMedium spiny neuronsTCF4BiologyKANSL1African American cohortGenome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations
Kranzler HR, Zhou H, Kember RL, Vickers Smith R, Justice AC, Damrauer S, Tsao PS, Klarin D, Baras A, Reid J, Overton J, Rader DJ, Cheng Z, Tate JP, Becker WC, Concato J, Xu K, Polimanti R, Zhao H, Gelernter J. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nature Communications 2019, 10: 1499. PMID: 30940813, PMCID: PMC6445072, DOI: 10.1038/s41467-019-09480-8.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesAssociation studiesMillion Veteran Program sampleGenetic correlationsWide significant lociSignificant genetic correlationsPolygenic risk scoresCell type groupSignificant lociHeritable traitEnrichment analysisTraitsMultiple populationsLociPhenotypeProgram samplesUnderstanding the comorbidity between posttraumatic stress severity and coronary artery disease using genome-wide information and electronic health records
Polimanti R, Wendt FR, Pathak GA, Tylee DS, Tcheandjieu C, Hilliard AT, Levey DF, Adhikari K, Gaziano JM, O’Donnell C, Assimes TL, Stein MB, Gelernter J. Understanding the comorbidity between posttraumatic stress severity and coronary artery disease using genome-wide information and electronic health records. Molecular Psychiatry 2022, 27: 3961-3969. PMID: 35986173, PMCID: PMC10986859, DOI: 10.1038/s41380-022-01735-z.Peer-Reviewed Original ResearchConceptsCoronary artery diseasePosttraumatic stress disorderElectronic health recordsMillion Veteran ProgramArtery diseaseTotal scoreCAD diagnosisPlatelet amyloid precursor proteinHealth recordsPosttraumatic stress severityAmyloid precursor proteinEarly CAD diagnosisUK BiobankBidirectional relationshipTwo-sample Mendelian randomization (MR) analysisMendelian randomization analysisCAD riskHigh morbidityPTSD symptom severityCARDIoGRAMplusC4D consortiumPleiotropic mechanismsSymptom severityLongitudinal changesDiscordant effectsStress disorder
2024
Genome-wide meta-analysis of myasthenia gravis uncovers new loci and provides insights into polygenic prediction
Braun A, Shekhar S, Levey D, Straub P, Kraft J, Panagiotaropoulou G, Heilbron K, Awasthi S, Meleka Hanna R, Hoffmann S, Stein M, Lehnerer S, Mergenthaler P, Elnahas A, Topaloudi A, Koromina M, Palviainen T, Asbjornsdottir B, Stefansson H, Skuladóttir A, Jónsdóttir I, Stefansson K, Reis K, Esko T, Palotie A, Leypoldt F, Stein M, Fontanillas P, Kaprio J, Gelernter J, Davis L, Paschou P, Tannemaat M, Verschuuren J, Kuhlenbäumer G, Gregersen P, Huijbers M, Stascheit F, Meisel A, Ripke S. Genome-wide meta-analysis of myasthenia gravis uncovers new loci and provides insights into polygenic prediction. Nature Communications 2024, 15: 9839. PMID: 39537604, PMCID: PMC11560923, DOI: 10.1038/s41467-024-53595-6.Peer-Reviewed Original ResearchConceptsPerformance of polygenic risk scoresGenome-wide significant hitsGenome-wide association studiesGenome-wide meta-analysisControls of European ancestryGenetic architecturePolygenic risk scoresSignificant hitsAssociation studiesPhenotypic variationPolygenic predictionEuropean ancestryAssociated with early-onsetHuman leukocyte antigen allelesLociEarly-onsetReplication studyNeuromuscular junctionMyasthenia gravisAutoantibody-mediated diseasesAntigen allelesAllelesAncestryDisease manifestationsLate-onset MGAssociation patterns of antisocial personality disorder across substance use disorders
Low A, Stiltner B, Nunez Y, Adhikari K, Deak J, Pietrzak R, Kranzler H, Gelernter J, Polimanti R. Association patterns of antisocial personality disorder across substance use disorders. Translational Psychiatry 2024, 14: 346. PMID: 39198385, PMCID: PMC11358160, DOI: 10.1038/s41398-024-03054-z.Peer-Reviewed Original ResearchConceptsAntisocial personality disorderSubstance use disordersPersonality disorderUse disorderAssociation of antisocial personality disorderPresence of antisocial personality disorderPrevalence of antisocial personality disorderHazardous useDSM-5 SUD diagnosesSubstance use disorder severityDiagnostic criteriaInteraction effects with sexTobacco use disorderDSM-5Association of alcoholSUD diagnosisDisordersCocaineRacial/ethnic backgroundsIndividualsCocUDSeverityCannabisAssociation patternsAssociationHuman genetics and epigenetics of alcohol use disorder
Zhou H, Gelernter J. Human genetics and epigenetics of alcohol use disorder. Journal Of Clinical Investigation 2024, 134: e172885. PMID: 39145449, PMCID: PMC11324314, DOI: 10.1172/jci172885.Peer-Reviewed Original ResearchConceptsEpigenome-wide association studiesEWAS studiesPower of GWASTranscriptome-wide associationGenome-wide scanAlcohol use disorderWhole-genome sequencingDrug-gene interactionsSingle-cell sequencingAssociation studiesDownstream analysisHuman geneticsGenetic variantsEpigenetic risk factorsVariant functionEpigenetic changesSpatial transcriptomicsUse disorderEpigeneticsDisease risk predictionGenetic correlationsDiversity of populationGeneticsComplex etiologyEnvironmental factorsDiversity and scale: Genetic architecture of 2068 traits in the VA Million Veteran Program
Verma A, Huffman J, Rodriguez A, Conery M, Liu M, Ho Y, Kim Y, Heise D, Guare L, Panickan V, Garcon H, Linares F, Costa L, Goethert I, Tipton R, Honerlaw J, Davies L, Whitbourne S, Cohen J, Posner D, Sangar R, Murray M, Wang X, Dochtermann D, Devineni P, Shi Y, Nandi T, Assimes T, Brunette C, Carroll R, Clifford R, Duvall S, Gelernter J, Hung A, Iyengar S, Joseph J, Kember R, Kranzler H, Kripke C, Levey D, Luoh S, Merritt V, Overstreet C, Deak J, Grant S, Polimanti R, Roussos P, Shakt G, Sun Y, Tsao N, Venkatesh S, Voloudakis G, Justice A, Begoli E, Ramoni R, Tourassi G, Pyarajan S, Tsao P, O'Donnell C, Muralidhar S, Moser J, Casas J, Bick A, Zhou W, Cai T, Voight B, Cho K, Gaziano J, Madduri R, Damrauer S, Liao K. Diversity and scale: Genetic architecture of 2068 traits in the VA Million Veteran Program. Science 2024, 385: eadj1182. PMID: 39024449, DOI: 10.1126/science.adj1182.Peer-Reviewed Original ResearchConceptsMillion Veteran ProgramNon-European populationsVeteran ProgramGenetic architectureAtlas of genetic associationsVeterans Affairs Million Veteran ProgramVA Million Veteran ProgramGenomic risk lociGenome-wide associationHuman genetic studiesHealth disparitiesUnited States veteransCausal variantsRisk lociGenetic insightsGenetic studiesGenetic associationGenetic causeStates veteransDiverse populationsDisease factorsLack of inclusionLongitudinal studyParticipantsTraitsGenome-wide association study of the common retinal disorder epiretinal membrane: Significant risk loci in each of three American populations
Gelernter J, Levey D, Galimberti M, Harrington K, Zhou H, Adhikari K, Gupta P, Program V, Gaziano J, Eliott D, Stein M. Genome-wide association study of the common retinal disorder epiretinal membrane: Significant risk loci in each of three American populations. Cell Genomics 2024, 4: 100582. PMID: 38870908, PMCID: PMC11228954, DOI: 10.1016/j.xgen.2024.100582.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesMillion Veteran ProgramRisk lociAssociation studiesTrans-ancestry meta-analysisSignificant risk lociPathway enrichment analysisEpiretinal membraneTrans-ancestryGenome-wideMultiple traitsGenetic associationEnrichment analysisGene expressionEuropean AmericansLoss of visual acuityVeteran ProgramGenetic correlationsLociBiological mechanismsAmerican populationVisual acuityRetinal conditionsControl individualsRetinal surfaceMulti-ancestry meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals associations with multiple health outcomes
Toikumo S, Jennings M, Pham B, Lee H, Mallard T, Bianchi S, Meredith J, Vilar-Ribó L, Xu H, Hatoum A, Johnson E, Pazdernik V, Jinwala Z, Pakala S, Leger B, Niarchou M, Ehinmowo M, Jenkins G, Batzler A, Pendegraft R, Palmer A, Zhou H, Biernacka J, Coombes B, Gelernter J, Xu K, Hancock D, Cox N, Smoller J, Davis L, Justice A, Kranzler H, Kember R, Sanchez-Roige S. Multi-ancestry meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals associations with multiple health outcomes. Nature Human Behaviour 2024, 8: 1177-1193. PMID: 38632388, PMCID: PMC11199106, DOI: 10.1038/s41562-024-01851-6.Peer-Reviewed Original ResearchConceptsTobacco use disorderPotential risk genesMulti-ancestry meta-analysisMultiple health outcomesElectronic health recordsSource of phenotypic informationGenome-wide association studiesUse disorderAscertainment cohortHealth outcomesHealth recordsPrevalent substance use disordersRisk genesIndependent risk lociUK BiobankSubstance use disordersSmoking behaviorMedical outcomesFunctional genomics toolsPsychiatric traitsAssociation studiesRisk lociRisk variantsHeart diseaseGenomic toolsA phenome-wide association and Mendelian randomisation study of alcohol use variants in a diverse cohort comprising over 3 million individuals
Jennings M, Martínez-Magaña J, Courchesne-Krak N, Cupertino R, Vilar-Ribó L, Bianchi S, Hatoum A, Atkinson E, Giusti-Rodriguez P, Montalvo-Ortiz J, Gelernter J, Artigas M, 23andMe I, Aslibekyan S, Auton A, Babalola E, Bell R, Bielenberg J, Bryc K, Bullis E, Coker D, Partida G, Dhamija D, Das S, Elson S, Eriksson N, Filshtein T, Fitch A, Fletez-Brant K, Fontanillas P, Freyman W, Granka J, Heilbron K, Hernandez A, Hicks B, Hinds D, Jewett E, Jiang Y, Kukar K, Kwong A, Lin K, Llamas B, Lowe M, McCreight J, McIntyre M, Micheletti S, Moreno M, Nandakumar P, Nguyen D, Noblin E, O'Connell J, Petrakovitz A, Poznik G, Reynoso A, Schumacher M, Shastri A, Shelton J, Shi J, Shringarpure S, Su Q, Tat S, Tchakouté C, Tran V, Tung J, Wang X, Wang W, Weldon C, Wilton P, Wong C, Elson S, Edenberg H, Fontanillas P, Palmer A, Sanchez-Roige S. A phenome-wide association and Mendelian randomisation study of alcohol use variants in a diverse cohort comprising over 3 million individuals. EBioMedicine 2024, 103: 105086. PMID: 38580523, PMCID: PMC11121167, DOI: 10.1016/j.ebiom.2024.105086.Peer-Reviewed Original ResearchConceptsMultiple domains of healthDomains of healthEffects of alcohol consumptionAlcohol consumptionHealth outcomesPhenome-wide association studyAlcohol-related behaviorsCardio-metabolic healthPotential causal effectMendelian randomisation studiesGenome-wide association studiesPhenome-wide associationMR analysisPheWAS associationsMultiple domainsHypothesis-free approachPreventive medicineDiverse cohortPheWASAssociation studiesHealthReproductive healthAlcohol behaviorConsequences of drinkingEuropean cohortWhole-exome sequencing in UK Biobank reveals rare genetic architecture for depression
Tian R, Ge T, Kweon H, Rocha D, Lam M, Liu J, Singh K, Levey D, Gelernter J, Stein M, Tsai E, Huang H, Chabris C, Lencz T, Runz H, Chen C. Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression. Nature Communications 2024, 15: 1755. PMID: 38409228, PMCID: PMC10897433, DOI: 10.1038/s41467-024-45774-2.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesRare coding variantsWhole-exome sequencingGenetic architectureGenetic relationshipsLoss-of-function intolerant genesContribution of rare coding variantsRare damagingAssociated with risk of depressionElectronic health recordsUK Biobank participantsPolygenic risk scoresRisk of depressionAssociated with riskIntolerant genesRisk lociAssociation studiesCoding variantsBiobank participantsHealth recordsUK BiobankDepression definitionsDepression riskBurden analysisRare variantsGenetic contribution to the comorbidity between attention-deficit/hyperactivity disorder and substance use disorders
Koller D, Mitjans M, Kouakou M, Friligkou E, Cabrera-Mendoza B, Deak J, Llonga N, Pathak G, Stiltner B, Løkhammer S, Levey D, Zhou H, Hatoum A, Kember R, Kranzler H, Stein M, Corominas R, Demontis D, Artigas M, Ramos-Quiroga J, Gelernter J, Ribasés M, Cormand B, Polimanti R. Genetic contribution to the comorbidity between attention-deficit/hyperactivity disorder and substance use disorders. Psychiatry Research 2024, 333: 115758. PMID: 38335780, PMCID: PMC11157987, DOI: 10.1016/j.psychres.2024.115758.Peer-Reviewed Original ResearchConceptsUse disorderGenome-wide association studiesGenomic structural equation modelingCannabis use disorderAlcohol Use Disorders Identification TestAttention-deficit/hyperactivity disorderAlcohol use disorderProblematic alcohol useSubstance use disordersTwo-sample Mendelian randomization analysisLinkage disequilibrium score regression analysisDisorders Identification TestMendelian randomization analysisAssociated with increased oddsOdds of ADHDOpioid use disorderAttention-deficit/hyperactivityGWAS meta-analysesAlcohol dependenceStructural equation modelingNicotine dependenceInvestigate genetic correlationsADHDPolygenic riskStrength of evidence