Featured Publications
Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits
Zhou H, Sealock JM, Sanchez-Roige S, Clarke TK, Levey DF, Cheng Z, Li B, Polimanti R, Kember RL, Smith RV, Thygesen JH, Morgan MY, Atkinson SR, Thursz MR, Nyegaard M, Mattheisen M, Børglum AD, Johnson EC, Justice AC, Palmer AA, McQuillin A, Davis LK, Edenberg HJ, Agrawal A, Kranzler HR, Gelernter J. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nature Neuroscience 2020, 23: 809-818. PMID: 32451486, PMCID: PMC7485556, DOI: 10.1038/s41593-020-0643-5.Peer-Reviewed Original ResearchConceptsRegulatory genomic regionsGenome-wide association studiesNovel risk lociEuropean ancestry individualsPolygenic risk score analysisIndependent risk variantsGenetic architectureGenomic regionsRisk lociAssociation studiesGenetic relationshipsRisk genesGenetic correlationsPsychiatric traitsRisk variantsRisk score analysisTraitsGenetic heritabilityYields insightsBiobank samplesMendelian randomizationGenesLociBiologyHeritability
2024
Multi-ancestry meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals associations with multiple health outcomes
Toikumo S, Jennings M, Pham B, Lee H, Mallard T, Bianchi S, Meredith J, Vilar-Ribó L, Xu H, Hatoum A, Johnson E, Pazdernik V, Jinwala Z, Pakala S, Leger B, Niarchou M, Ehinmowo M, Jenkins G, Batzler A, Pendegraft R, Palmer A, Zhou H, Biernacka J, Coombes B, Gelernter J, Xu K, Hancock D, Cox N, Smoller J, Davis L, Justice A, Kranzler H, Kember R, Sanchez-Roige S. Multi-ancestry meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals associations with multiple health outcomes. Nature Human Behaviour 2024, 8: 1177-1193. PMID: 38632388, PMCID: PMC11199106, DOI: 10.1038/s41562-024-01851-6.Peer-Reviewed Original ResearchConceptsTobacco use disorderPotential risk genesMulti-ancestry meta-analysisMultiple health outcomesElectronic health recordsSource of phenotypic informationGenome-wide association studiesUse disorderAscertainment cohortHealth outcomesHealth recordsPrevalent substance use disordersRisk genesIndependent risk lociUK BiobankSubstance use disordersSmoking behaviorMedical outcomesFunctional genomics toolsPsychiatric traitsAssociation studiesRisk lociRisk variantsHeart diseaseGenomic tools
2023
Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses
Als T, Kurki M, Grove J, Voloudakis G, Therrien K, Tasanko E, Nielsen T, Naamanka J, Veerapen K, Levey D, Bendl J, Bybjerg-Grauholm J, Zeng B, Demontis D, Rosengren A, Athanasiadis G, Bækved-Hansen M, Qvist P, Bragi Walters G, Thorgeirsson T, Stefánsson H, Musliner K, Rajagopal V, Farajzadeh L, Thirstrup J, Vilhjálmsson B, McGrath J, Mattheisen M, Meier S, Agerbo E, Stefánsson K, Nordentoft M, Werge T, Hougaard D, Mortensen P, Stein M, Gelernter J, Hovatta I, Roussos P, Daly M, Mors O, Palotie A, Børglum A. Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses. Nature Medicine 2023, 29: 1832-1844. PMID: 37464041, PMCID: PMC10839245, DOI: 10.1038/s41591-023-02352-1.Peer-Reviewed Original ResearchConceptsSingle nucleotide polymorphism heritabilityGenome-wide analysisLikely causal genesFunctional genomics dataRisk variantsWide association studyPolygenic burdenPsychiatric disordersCausal genesPolygenic architectureGenomic dataRisk lociAssociation studiesSubgroups of depressionCause of disabilityDepression genetic riskCommon psychiatric disordersPrecision medicine approachCases of depressionOligodendrocyte lineageGenesLociConsiderable sex differencesGABAergic neuronsPsychiatric comorbidity
2022
Genetic variants associated with psychiatric disorders are enriched at epigenetically active sites in lymphoid cells
Lynall ME, Soskic B, Hayhurst J, Schwartzentruber J, Levey DF, Pathak GA, Polimanti R, Gelernter J, Stein MB, Trynka G, Clatworthy MR, Bullmore E. Genetic variants associated with psychiatric disorders are enriched at epigenetically active sites in lymphoid cells. Nature Communications 2022, 13: 6102. PMID: 36243721, PMCID: PMC9569335, DOI: 10.1038/s41467-022-33885-7.Peer-Reviewed Original ResearchConceptsMultiple psychiatric disordersPsychiatric disordersPsychiatric risk variantT cellsLymphoid cellsRisk variantsImmune cell subsetsMental health disordersMultiple organ systemsAdaptive immune systemCell subsetsImmune cellsHealth disordersMyeloid cellsImmune systemBrain tissueOrgan systemsSpecific disordersDisordersPathogenesisAbnormalitiesGenetic variantsCellsCD4Variants
2019
Genomewide Study of Epigenetic Biomarkers of Opioid Dependence in European- American Women
Montalvo-Ortiz JL, Cheng Z, Kranzler HR, Zhang H, Gelernter J. Genomewide Study of Epigenetic Biomarkers of Opioid Dependence in European- American Women. Scientific Reports 2019, 9: 4660. PMID: 30874594, PMCID: PMC6420601, DOI: 10.1038/s41598-019-41110-7.Peer-Reviewed Original ResearchConceptsEpigenome-wide association studiesEpigenetic mechanismsAssociation studiesAssociation analysisCpG sitesFirst epigenome-wide association studyGenome-wide association studiesPrevious genome-wide association studyCandidate gene approachChromatin remodelingDNA bindingGene approachGenomewide studiesDNA methylation ageCell survivalEpigenetic biomarkersRisk variantsPopulation stratificationMethylation ageGenesCell projectionsOpioid dependenceNovel peripheral biomarkersEuropean American womenCell proportion
2018
Genome-wide association study identifies glutamate ionotropic receptor GRIA4 as a risk gene for comorbid nicotine dependence and major depression
Zhou H, Cheng Z, Bass N, Krystal JH, Farrer LA, Kranzler HR, Gelernter J. Genome-wide association study identifies glutamate ionotropic receptor GRIA4 as a risk gene for comorbid nicotine dependence and major depression. Translational Psychiatry 2018, 8: 208. PMID: 30287806, PMCID: PMC6172277, DOI: 10.1038/s41398-018-0258-8.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesGenome-wide association study identifiesRisk genesTop risk genesCalcium ion bindingGenomes reference panelFast excitatory synaptic transmissionGenetic risk variantsGenetic basisEnrichment analysisAssociation studiesExome arrayCell adhesionRisk variantsGenesReference panelGenetic riskAMPA-sensitive glutamate receptorsIntronic variantsIon bindingBiological mechanismsConditional analysisGRIA4Excitatory synaptic transmissionSynaptic transmissionGenome-wide analysis of insomnia disorder
Stein MB, McCarthy MJ, Chen CY, Jain S, Gelernter J, He F, Heeringa SG, Kessler RC, Nock MK, Ripke S, Sun X, Wynn GH, Smoller JW, Ursano RJ. Genome-wide analysis of insomnia disorder. Molecular Psychiatry 2018, 23: 2238-2250. PMID: 29520036, PMCID: PMC6129221, DOI: 10.1038/s41380-018-0033-5.Peer-Reviewed Original ResearchMeSH KeywordsAdultBlack or African AmericanCohort StudiesDepressive Disorder, MajorDiabetes Mellitus, Type 2FemaleGenetic Predisposition to DiseaseGenome-Wide Association StudyHispanic or LatinoHumansMaleMilitary PersonnelMultifactorial InheritancePolymorphism, Single NucleotideRisk FactorsSleep Initiation and Maintenance DisordersWhite PeopleYoung AdultConceptsGenome-wide association studiesAncestral groupsGenome-wide significant lociGenome-wide analysisGene-based associationSignificant gene-based associationsSleep-related traitsGenetic risk variantsSignificant lociChr 7Heritable basisChr 9Association studiesRisk variantsGenetic contributionLociUK BiobankMetabolic diseasesRFX3Genetic riskTraitsHeritabilityPolygenic riskTwin studiesDeleterious health effects
2017
Genome-Wide Association Studies of a Broad Spectrum of Antisocial Behavior
Tielbeek JJ, Johansson A, Polderman TJC, Rautiainen MR, Jansen P, Taylor M, Tong X, Lu Q, Burt AS, Tiemeier H, Viding E, Plomin R, Martin NG, Heath AC, Madden PAF, Montgomery G, Beaver KM, Waldman I, Gelernter J, Kranzler HR, Farrer LA, Perry JRB, Munafò M, LoParo D, Paunio T, Tiihonen J, Mous SE, Pappa I, de Leeuw C, Watanabe K, Hammerschlag AR, Salvatore JE, Aliev F, Bigdeli TB, Dick D, Faraone SV, Popma A, Medland SE, Posthuma D. Genome-Wide Association Studies of a Broad Spectrum of Antisocial Behavior. JAMA Psychiatry 2017, 74: 1242-1250. PMID: 28979981, PMCID: PMC6309228, DOI: 10.1001/jamapsychiatry.2017.3069.Peer-Reviewed Original ResearchConceptsNovel genetic risk variantsSingle nucleotide polymorphism-based heritabilityGenome-wide association studiesGenome-wide association dataCausal genetic variantsGenome-wide genotypesPolygenic risk score analysisGenetic architectureGenetic risk variantsInverse genetic correlationPromising lociAssociation studiesBiological pathwaysPleiotropic associationsQuantitative phenotypesGenetic correlationsPsychiatric traitsAssociation dataGenetic effectsRisk variantsRisk score analysisGenetic variantsGenetic originDiscovery sampleTraitsGenetic Risk Variants Associated With Comorbid Alcohol Dependence and Major Depression
Zhou H, Polimanti R, Yang BZ, Wang Q, Han S, Sherva R, Nuñez YZ, Zhao H, Farrer LA, Kranzler HR, Gelernter J. Genetic Risk Variants Associated With Comorbid Alcohol Dependence and Major Depression. JAMA Psychiatry 2017, 74: 1234-1241. PMID: 29071344, PMCID: PMC6331050, DOI: 10.1001/jamapsychiatry.2017.3275.Peer-Reviewed Original ResearchMeSH KeywordsAdultAlcoholismBlack or African AmericanComorbidityDepressive Disorder, MajorDiagnostic and Statistical Manual of Mental DisordersFemaleGenetic Predisposition to DiseaseGenetic VariationHumansMaleMiddle AgedMultifactorial InheritanceOrgan SizePutamenSemaphorin-3AUnited StatesWhite PeopleConceptsGenome-wide association studiesGenetic risk variantsNeuropsychiatric traitsAssociation studiesRisk variantsPolygenic risk allelesPolygenic risk scoresGenetic mechanismsGenetic basisAmerican data setMolecular natureTraitsCriterion countsGenetic causePossible genetic causesMD comorbidityRisk allelesComorbid alcohol dependenceValidating Harmful Alcohol Use as a Phenotype for Genetic Discovery Using Phosphatidylethanol and a Polymorphism in ADH1B
Justice AC, McGinnis KA, Tate JP, Xu K, Becker WC, Zhao H, Gelernter J, Kranzler HR. Validating Harmful Alcohol Use as a Phenotype for Genetic Discovery Using Phosphatidylethanol and a Polymorphism in ADH1B. Alcohol Clinical And Experimental Research 2017, 41: 998-1003. PMID: 28295416, PMCID: PMC5501250, DOI: 10.1111/acer.13373.Peer-Reviewed Original ResearchConceptsHarmful alcohol useAlcohol exposureAlcohol useElectronic health record dataEHR dataAUDIT-C scoresHealth record dataLongitudinal electronic health record dataLongitudinal trajectoriesChi-square testEHR-derived phenotypesStudy cohortBlood drawCommon missense polymorphismGenetic risk variantsBlood samplingMissense polymorphismAlcohol riskQuantitative biomarkersRecord dataMedianRisk variantsOverall sampleAfrican AmericansADH1B gene
2014
GPA: A Statistical Approach to Prioritizing GWAS Results by Integrating Pleiotropy and Annotation
Chung D, Yang C, Li C, Gelernter J, Zhao H. GPA: A Statistical Approach to Prioritizing GWAS Results by Integrating Pleiotropy and Annotation. PLOS Genetics 2014, 10: e1004787. PMID: 25393678, PMCID: PMC4230845, DOI: 10.1371/journal.pgen.1004787.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesFunctional annotationGWAS datasetsAnnotation informationStatistical approachMultiple GWAS datasetsGenome-wide markersPowerful statistical methodsSingle-phenotype analysisCentral nervous system genesRisk variantsNervous system genesGenotype-Tissue Expression (GTEx) databaseComplex diseasesGWAS data setsSignificant pleiotropic effectsCommon risk basisDifferent complex diseasesDNase-seq dataCell linesStatistical inferenceGenetic architectureGWAS hitsGWAS resultsNovel statistical approach
2013
Genome-Wide Association Study of Opioid Dependence: Multiple Associations Mapped to Calcium and Potassium Pathways
Gelernter J, Kranzler HR, Sherva R, Koesterer R, Almasy L, Zhao H, Farrer LA. Genome-Wide Association Study of Opioid Dependence: Multiple Associations Mapped to Calcium and Potassium Pathways. Biological Psychiatry 2013, 76: 66-74. PMID: 24143882, PMCID: PMC3992201, DOI: 10.1016/j.biopsych.2013.08.034.Peer-Reviewed Original ResearchMeSH KeywordsAllelesBlack or African AmericanCalcium ChannelsCalcium SignalingDatabases, GeneticGenetic Predisposition to DiseaseGenome-Wide Association StudyGenotypeHumansLong-Term PotentiationOpioid-Related DisordersPolymorphism, Single NucleotidePotassiumPotassium Channels, Voltage-GatedSignal TransductionWhite PeopleConceptsGenome-wide association studiesSingle nucleotide polymorphismsAssociation studiesSignificant single nucleotide polymorphismsGenomes reference panelGWAS dataMultiple lociPathway analysisCalcium signalingRisk variantsGenesNucleotide polymorphismsPotassium pathwaysSimilar pathwaysReference panelAdditional genotypesPathwayMost significant resultsMultiple associationsLong-term potentiationLociGeneticsSignalingRisk pathwaysMicroarrayGenome-wide association study of cocaine dependence and related traits: FAM53B identified as a risk gene
Gelernter J, Sherva R, Koesterer R, Almasy L, Zhao H, Kranzler HR, Farrer L. Genome-wide association study of cocaine dependence and related traits: FAM53B identified as a risk gene. Molecular Psychiatry 2013, 19: 717-723. PMID: 23958962, PMCID: PMC3865158, DOI: 10.1038/mp.2013.99.Peer-Reviewed Original ResearchMeSH KeywordsAdultBlack or African AmericanCDC2 Protein KinaseCocaineCocaine-Related DisordersCyclin-Dependent KinasesDopamine Uptake InhibitorsFemaleGenetic Predisposition to DiseaseGenome-Wide Association StudyGenotyping TechniquesHumansMaleNuclear Receptor Co-Repressor 2Paranoid DisordersPolymorphism, Single NucleotideUnited StatesWhite PeopleConceptsGenome-wide association studiesAssociation studiesAvailable GWAS dataSignificant GWAS SNPsNovel risk lociGWAS data setsSame chromosomal regionDiscovery sampleGenomes reference panelPrevious linkage studiesGWAS SNPsGWAS dataRelated traitsChromosomal regionsRisk lociRisk genesRisk variantsGenesReference panelAdditional genotypesLinkage studiesLociEuropean-American subjectsCocaine-induced paranoiaFAM53B
2010
Genetics of drug dependence
Gelernter J, Kranzler HR. Genetics of drug dependence. Dialogues In Clinical Neuroscience 2010, 12: 77-84. PMID: 20373669, PMCID: PMC3181942, DOI: 10.31887/dcns.2010.12.1/jgelernter.Peer-Reviewed Original Research