2024
Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer
Robles-Oteíza C, Hastings K, Choi J, Sirois I, Ravi A, Expósito F, de Miguel F, Knight J, López-Giráldez F, Choi H, Socci N, Merghoub T, Awad M, Getz G, Gainor J, Hellmann M, Caron É, Kaech S, Politi K. Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer. Journal Of Experimental Medicine 2024, 222: e20231106. PMID: 39585348, PMCID: PMC11602551, DOI: 10.1084/jem.20231106.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsNon-small cell lung cancerAcquired resistanceCheckpoint inhibitorsResistant tumorsPatients treated with anti-PD-1/PD-L1 therapyAnti-PD-1/PD-L1 therapyLung cancerResistance to immune checkpoint inhibitorsAssociated with decreased progression-free survivalHypoxia activated pro-drugsTargeting hypoxic tumor regionsTreat non-small cell lung cancerAnti-CTLA-4Anti-PD-1Immune checkpoint inhibitionTumor metabolic featuresProgression-free survivalCell lung cancerResistant cancer cellsHypoxic tumor regionsMHC-II levelsRegions of hypoxiaKnock-outCheckpoint inhibition
2023
LRRC23 truncation impairs radial spoke 3 head assembly and sperm motility underlying male infertility
Hwang J, Chai P, Nawaz S, Choi J, Lopez-Giraldez F, Hussain S, Bilguvar K, Mane S, Lifton R, Ahmad W, Zhang K, Chung J. LRRC23 truncation impairs radial spoke 3 head assembly and sperm motility underlying male infertility. ELife 2023, 12: rp90095. PMID: 38091523, PMCID: PMC10721216, DOI: 10.7554/elife.90095.Peer-Reviewed Original ResearchMicroRNA-1 protects the endothelium in acute lung injury
Korde A, Haslip M, Pednekar P, Khan A, Chioccioli M, Mehta S, Lopez-Giraldez F, Bermejo S, Rojas M, Dela Cruz C, Matthay M, Pober J, Pierce R, Takyar S. MicroRNA-1 protects the endothelium in acute lung injury. JCI Insight 2023, 8: e164816. PMID: 37737266, PMCID: PMC10561733, DOI: 10.1172/jci.insight.164816.Peer-Reviewed Original ResearchConceptsAcute respiratory distress syndromeAcute lung injuryVascular endothelial growth factorAngiopoietin-2Lung injuryAcute injuryMiR-1MicroRNA-1Endothelial cell-specific overexpressionSevere endothelial dysfunctionRespiratory distress syndromeSurvival of miceIntrinsic protective effectContext of injuryCell-specific overexpressionEndothelial growth factorFamily member 3Pneumonia cohortMiR-1 targetsEndothelial dysfunctionDistress syndromeBarrier dysfunctionCapillary leakProtective effectSevere formMultiomic analyses implicate a neurodevelopmental program in the pathogenesis of cerebral arachnoid cysts
Kundishora A, Allington G, McGee S, Mekbib K, Gainullin V, Timberlake A, Nelson-Williams C, Kiziltug E, Smith H, Ocken J, Shohfi J, Allocco A, Duy P, Elsamadicy A, Dong W, Zhao S, Wang Y, Qureshi H, DiLuna M, Mane S, Tikhonova I, Fu P, Castaldi C, López-Giráldez F, Knight J, Furey C, Carter B, Haider S, Moreno-De-Luca A, Alper S, Gunel M, Millan F, Lifton R, Torene R, Jin S, Kahle K. Multiomic analyses implicate a neurodevelopmental program in the pathogenesis of cerebral arachnoid cysts. Nature Medicine 2023, 29: 667-678. PMID: 36879130, DOI: 10.1038/s41591-023-02238-2.Peer-Reviewed Original ResearchConceptsArachnoid cystCerebral arachnoid cystsDe novo variantsAC pathogenesisDevelopmental brain lesionsStructural brain diseaseAppropriate clinical contextPatients' medical recordsDamaging de novo variantsMedical recordsClinical severityBrain lesionsHealthy individualsAC subtypesBrain diseasesGenetic testingNeurodevelopmental pathologyClinical contextPathogenesisPatient phenotypesNeurodevelopmental programsNovo variantsRNA sequencing transcriptomeHuman brainCystsHYDIN Variants Are a Common Cause of Primary Ciliary Dyskinesia in French Canadians.
Shapiro A, Sillon G, D'Agostino D, Baret L, López-Giráldez F, Mane S, Leigh M, Davis S, Knowles M, Zariwala M. HYDIN Variants Are a Common Cause of Primary Ciliary Dyskinesia in French Canadians. Annals Of The American Thoracic Society 2023, 20: 140-144. PMID: 36112114, PMCID: PMC9819264, DOI: 10.1513/annalsats.202203-253rl.Peer-Reviewed Original Research
2022
Brain metastatic outgrowth and osimertinib resistance are potentiated by RhoA in EGFR-mutant lung cancer
Adua S, Arnal-Estapé A, Zhao M, Qi B, Liu Z, Kravitz C, Hulme H, Strittmatter N, López-Giráldez F, Chande S, Albert A, Melnick M, Hu B, Politi K, Chiang V, Colclough N, Goodwin R, Cross D, Smith P, Nguyen D. Brain metastatic outgrowth and osimertinib resistance are potentiated by RhoA in EGFR-mutant lung cancer. Nature Communications 2022, 13: 7690. PMID: 36509758, PMCID: PMC9744876, DOI: 10.1038/s41467-022-34889-z.Peer-Reviewed Original ResearchConceptsGene expression programsRas homolog family member ACancer cellsFamily member AEpidermal growth factor receptorExpression programsMetastatic cancer cellsSRF signalingGrowth factor receptorTumor microenvironmentLung cancerFunctional linkExtracellular lamininDrug-resistant cancer cellsMutant non-small cell lung cancerNon-small cell lung cancerCentral nervous system relapseMolecular studiesMember AEGFR-mutant lung cancerFactor receptorNervous system relapseCell lung cancerDisseminated tumor cellsBrain tumor microenvironmentWhole-exome sequencing reveals damaging gene variants associated with hypoalphalipoproteinemia
Dong W, Wong KHY, Liu Y, Levy-Sakin M, Hung WC, Li M, Li B, Jin SC, Choi J, Lopez-Giraldez F, Vaka D, Poon A, Chu C, Lao R, Balamir M, Movsesyan I, Malloy MJ, Zhao H, Kwok PY, Kane JP, Lifton RP, Pullinger CR. Whole-exome sequencing reveals damaging gene variants associated with hypoalphalipoproteinemia. Journal Of Lipid Research 2022, 63: 100209. PMID: 35460704, PMCID: PMC9126845, DOI: 10.1016/j.jlr.2022.100209.Peer-Reviewed Original ResearchConceptsWhole-exome sequencingCandidate genesDamaging variantsGenome-wide association studiesGenome-wide significanceDamaging rare variantsCandidate gene listGene burden testingHDL-C levelsGene variantsGene listsAssociation studiesLDLR geneGenesBurden testingCancer biologySequencingFunction variantsABCA1Mean HDL-C levelsRare variantsDiscovery studiesCoronary heart diseaseHDL deficiencyRisk of cancerArhGEF12 activates Rap1A and not RhoA in human dermal microvascular endothelial cells to reduce tumor necrosis factor‐induced leak
Khan A, Ni W, Baltazar T, Lopez‐Giraldez F, Pober JS, Pierce RW. ArhGEF12 activates Rap1A and not RhoA in human dermal microvascular endothelial cells to reduce tumor necrosis factor‐induced leak. The FASEB Journal 2022, 36: e22254. PMID: 35294066, PMCID: PMC9103844, DOI: 10.1096/fj.202101873rr.Peer-Reviewed Original ResearchThe role of SPAG1 in the assembly of axonemal dyneins in human airway epithelia
Smith AJ, Bustamante-Marin XM, Yin W, Sears PR, Herring LE, Dicheva NN, López-Giráldez F, Mane S, Tarran R, Leigh MW, Knowles MR, Zariwala MA, Ostrowski LE. The role of SPAG1 in the assembly of axonemal dyneins in human airway epithelia. Journal Of Cell Science 2022, 135 PMID: 35178554, PMCID: PMC8995097, DOI: 10.1242/jcs.259512.Peer-Reviewed Original ResearchCenters for Mendelian Genomics: A decade of facilitating gene discovery
Baxter SM, Posey JE, Lake NJ, Sobreira N, Chong JX, Buyske S, Blue EE, Chadwick LH, Coban-Akdemir ZH, Doheny KF, Davis CP, Lek M, Wellington C, Jhangiani SN, Gerstein M, Gibbs RA, Lifton RP, MacArthur DG, Matise TC, Lupski JR, Valle D, Bamshad MJ, Hamosh A, Mane S, Nickerson DA, Consortium C, Adams M, Aguet F, Akay G, Anderson P, Antonescu C, Arachchi H, Atik M, Austin-Tse C, Babb L, Bacus T, Bahrambeigi V, Balasubramanian S, Bayram Y, Beaudet A, Beck C, Belmont J, Below J, Bilguvar K, Boehm C, Boerwinkle E, Boone P, Bowne S, Brand H, Buckingham K, Byrne A, Calame D, Campbell I, Cao X, Carvalho C, Chander V, Chang J, Chao K, Chinn I, Clarke D, Collins R, Cummings B, Dardas Z, Dawood M, Delano K, DiTroia S, Doddapaneni H, Du H, Du R, Duan R, Eldomery M, Eng C, England E, Evangelista E, Everett S, Fatih J, Felsenfeld A, Francioli L, Frazar C, Fu J, Gamarra E, Gambin T, Gan W, Gandhi M, Ganesh V, Garimella K, Gauthier L, Giroux D, Gonzaga-Jauregui C, Goodrich J, Gordon W, Griffith S, Grochowski C, Gu S, Gudmundsson S, Hall S, Hansen A, Harel T, Harmanci A, Herman I, Hetrick K, Hijazi H, Horike-Pyne M, Hsu E, Hu J, Huang Y, Hurless J, Jahl S, Jarvik G, Jiang Y, Johanson E, Jolly A, Karaca E, Khayat M, Knight J, Kolar J, Kumar S, Lalani S, Laricchia K, Larkin K, Leal S, Lemire G, Lewis R, Li H, Ling H, Lipson R, Liu P, Lovgren A, López-Giráldez F, MacMillan M, Mangilog B, Mano S, Marafi D, Marosy B, Marshall J, Martin R, Marvin C, Mawhinney M, McGee S, McGoldrick D, Mehaffey M, Mekonnen B, Meng X, Mitani T, Miyake C, Mohr D, Morris S, Mullen T, Murdock D, Murugan M, Muzny D, Myers B, Neira J, Nguyen K, Nielsen P, Nudelman N, O’Heir E, O’Leary M, Ongaco C, Orange J, Osei-Owusu I, Paine I, Pais L, Paschall J, Patterson K, Pehlivan D, Pelle B, Penney S, Chavez J, Pierce-Hoffman E, Poli C, Punetha J, Radhakrishnan A, Richardson M, Rodrigues E, Roote G, Rosenfeld J, Ryke E, Sabo A, Sanchez A, Schrauwen I, Scott D, Sedlazeck F, Serrano J, Shaw C, Shelford T, Shively K, Singer-Berk M, Smith J, Snow H, Snyder G, Solomonson M, Son R, Song X, Stankiewicz P, Stephan T, Sutton V, Sveden A, Sánchez D, Tackett M, Talkowski M, Threlkeld M, Tiao G, Udler M, Vail L, Valivullah Z, Valkanas E, VanNoy G, Wang Q, Wang G, Wang L, Wangler M, Watts N, Weisburd B, Weiss J, Wheeler M, White J, Williamson C, Wilson M, Wiszniewski W, Withers M, Witmer D, Witzgall L, Wohler E, Wojcik M, Wong I, Wood J, Wu N, Xing J, Yang Y, Yi Q, Yuan B, Zeiger J, Zhang C, Zhang P, Zhang Y, Zhang X, Zhang Y, Zhang S, Zoghbi H, van den Veyver I, Rehm H, O’Donnell-Luria A. Centers for Mendelian Genomics: A decade of facilitating gene discovery. Genetics In Medicine 2022, 24: 784-797. PMID: 35148959, PMCID: PMC9119004, DOI: 10.1016/j.gim.2021.12.005.Peer-Reviewed Original ResearchConceptsGene discoveryMendelian GenomicsUnderstanding of genesGene-phenotype relationshipsGenome variationWorldwide data sharingCandidate genesMendelian phenotypesGenomic researchGenome sequencingMatchmaker ExchangeGenomicsGenesSequencingBiomedical researchMajor roleDiscoveryExomePhenotypeRoleGenotypesCommunity
2021
DIAPH1 Variants in Non–East Asian Patients With Sporadic Moyamoya Disease
Kundishora AJ, Peters ST, Pinard A, Duran D, Panchagnula S, Barak T, Miyagishima DF, Dong W, Smith H, Ocken J, Dunbar A, Nelson-Williams C, Haider S, Walker RL, Li B, Zhao H, Thumkeo D, Marlier A, Duy PQ, Diab NS, Reeves BC, Robert SM, Sujijantarat N, Stratman AN, Chen YH, Zhao S, Roszko I, Lu Q, Zhang B, Mane S, Castaldi C, López-Giráldez F, Knight JR, Bamshad MJ, Nickerson DA, Geschwind DH, Chen SL, Storm PB, Diluna ML, Matouk CC, Orbach DB, Alper SL, Smith ER, Lifton RP, Gunel M, Milewicz DM, Jin SC, Kahle KT. DIAPH1 Variants in Non–East Asian Patients With Sporadic Moyamoya Disease. JAMA Neurology 2021, 78: 993-1003. PMID: 34125151, PMCID: PMC8204259, DOI: 10.1001/jamaneurol.2021.1681.Peer-Reviewed Original ResearchConceptsSporadic moyamoya diseaseMoyamoya diseaseValidation cohortDiscovery cohortIntracranial internal carotid arteryRisk genesBilateral moyamoya diseaseTransfusion-dependent thrombocytopeniaLarger validation cohortNon-East Asian patientsInternal carotid arteryAsian individualsCompound heterozygous variantsNon-East AsiansProgressive vasculopathyTransmitted variantsAsian patientsChildhood strokeMedical recordsCarotid arteryTherapeutic ramificationsMAIN OUTCOMEMouse brain tissuePatientsUS hospitalsTumor necrosis factor‐induced ArhGEF10 selectively activates RhoB contributing to human microvascular endothelial cell tight junction disruption
Khan A, Ni W, Lopez‐Giraldez F, Kluger MS, Pober JS, Pierce RW. Tumor necrosis factor‐induced ArhGEF10 selectively activates RhoB contributing to human microvascular endothelial cell tight junction disruption. The FASEB Journal 2021, 35: e21627. PMID: 33948992, PMCID: PMC9026622, DOI: 10.1096/fj.202002783rr.Peer-Reviewed Original ResearchConceptsCapillary endothelial cellsHuman dermal microvascular endothelial cellsMicrovascular endothelial cellsEndothelial cellsTight junctionsCultured human microvascular endothelial cellsEC tight junctionsLoss of barrierCapillary leak syndromeCapillary barrier functionDermal microvascular endothelial cellsRhoB activationTight junction disruptionDisrupts tight junctionsHuman microvascular endothelial cellsExtent of TNFHuman capillary endothelial cellsLeak syndromeOverwhelming inflammationCapillary leakBarrier lossTJ disruptionJunction disruptionRhoB knockdownTNF
2020
Comparative Genomics within and across Bilaterians Illuminates the Evolutionary History of ALK and LTK Proto-Oncogene Origination and Diversification
Dornburg A, Wang Z, Wang J, Mo ES, López-Giráldez F, Townsend JP. Comparative Genomics within and across Bilaterians Illuminates the Evolutionary History of ALK and LTK Proto-Oncogene Origination and Diversification. Genome Biology And Evolution 2020, 13: evaa228. PMID: 33196781, PMCID: PMC7851593, DOI: 10.1093/gbe/evaa228.Peer-Reviewed Original ResearchConceptsLeukocyte tyrosine kinaseEvolutionary historyPhylogenetic analysisProtein-coding genesComparative genomic analysisEarly embryonic expressionMetazoan genomesComparative genomicsPhylogenetic contextModel organismsEmbryonic expressionModel speciesHuman genesKey genesGenomic analysisImportant genesMammal systemsFunctional convergenceTyrosine kinaseMolecular homologyGenesFunctional roleVertebratesMammal modelsHomologyAlternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome
Dyment DA, O'Donnell‐Luria A, Agrawal PB, Akdemir Z, Aleck KA, Antaki D, Al Sharhan H, Au P, Aydin H, Beggs AH, Bilguvar K, Boerwinkle E, Brand H, Brownstein CA, Buyske S, Chodirker B, Choi J, Chudley AE, Clericuzio CL, Cox GF, Curry C, de Boer E, de Vries B, Dunn K, Dutmer CM, England EM, Fahrner JA, Geckinli BB, Genetti CA, Gezdirici A, Gibson WT, Gleeson JG, Greenberg CR, Hall A, Hamosh A, Hartley T, Jhangiani SN, Karaca E, Kernohan K, Lauzon JL, Lewis MES, Lowry RB, López‐Giráldez F, Matise TC, McEvoy‐Venneri J, McInnes B, Mhanni A, Minaur S, Moilanen J, Nguyen A, Nowaczyk MJM, Posey JE, Õunap K, Pehlivan D, Pajusalu S, Penney LS, Poterba T, Prontera P, Doriqui MJR, Sawyer SL, Sobreira N, Stanley V, Torun D, Wargowski D, Witmer PD, Wong I, Xing J, Zaki MS, Zhang Y, Consortium C, Genomics C, Boycott KM, Bamshad MJ, Nickerson DA, Blue EE, Innes AM. Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome. American Journal Of Medical Genetics Part A 2020, 185: 119-133. PMID: 33098347, PMCID: PMC8197629, DOI: 10.1002/ajmg.a.61926.Peer-Reviewed Original ResearchConceptsGenome sequencingExtensive locus heterogeneityCopy number variationsGenomic analysisMolecular diagnosisSingle geneDe novo variantsNext-generation sequencingDisease genesWide sequencingGenesGenomic diagnosisLocus heterogeneityNovo variantsSequencingPhenotypeAdditional familiesBiallelic variantsHDAC8FamilyVariant filteringDistinctive facial appearanceClinical phenotypeVariantsUncertain significanceMutations disrupting neuritogenesis genes confer risk for cerebral palsy
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, Kruer MC. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nature Genetics 2020, 52: 1046-1056. PMID: 32989326, PMCID: PMC9148538, DOI: 10.1038/s41588-020-0695-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta CateninCerebral PalsyCyclin DCytoskeletonDrosophilaExomeExome SequencingExtracellular MatrixF-Box ProteinsFemaleFocal AdhesionsGenetic Predisposition to DiseaseGenome, HumanHumansMaleMutationNeuritesRhoB GTP-Binding ProteinRisk FactorsSequence Analysis, DNASignal TransductionTubulinTumor Suppressor ProteinsConceptsDamaging de novo mutationsCerebral palsyDe novo mutationsCerebral palsy casesRisk genesDamaging de novoNovo mutationsWhole-exome sequencingPalsy casesNeuromotor functionD levelsMonogenic etiologyCyclin D levelsNeuronal connectivityPalsyGene confer riskConfer riskRecessive variantsNeurodevelopmental disorder genesReverse genetic screenDisorder genesParent-offspring triosGenome-wide significanceGenomic factorsCytoskeleton pathwayCongenital Heart Defects Due to TAF1 Missense Variants
Morton SU, Agarwal R, Madden JA, Genetti CA, Brownstein CA, López-Giráldez F, Choi J, Seidman CE, Seidman JG, Lyon GJ, Agrawal PB. Congenital Heart Defects Due to TAF1 Missense Variants. Circulation Genomic And Precision Medicine 2020, 13: e002843. PMID: 32396742, PMCID: PMC7329268, DOI: 10.1161/circgen.119.002843.Peer-Reviewed Original ResearchTumor progression and chromatin landscape of lung cancer are regulated by the lineage factor GATA6
Arnal-Estapé A, Cai WL, Albert AE, Zhao M, Stevens LE, López-Giráldez F, Patel KD, Tyagi S, Schmitt EM, Westbrook TF, Nguyen DX. Tumor progression and chromatin landscape of lung cancer are regulated by the lineage factor GATA6. Oncogene 2020, 39: 3726-3737. PMID: 32157212, PMCID: PMC7190573, DOI: 10.1038/s41388-020-1246-z.Peer-Reviewed Original ResearchConceptsChromatin landscapeTranscription factorsBone morphogenetic protein (BMP) signalingDiverse transcriptional programsAlters chromatin accessibilityMultiple genomic lociMorphogenetic protein signalingDistal enhancer elementsSelective transcription factorsEpithelial cell typesSurfactant protein CChromatin accessibilityGenomic lociTranscriptional programsLung adenocarcinoma progressionTumor progressionEpigenetic mechanismsProtein signalingBiological functionsLUAD progressionLUAD cellsEnhancer elementsLineage dependencyTumor suppressionLung cancer cells
2019
PD-1H (VISTA)–mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus
Han X, Vesely MD, Yang W, Sanmamed MF, Badri T, Alawa J, López-Giráldez F, Gaule P, Lee SW, Zhang JP, Nie X, Nassar A, Boto A, Flies DB, Zheng L, Kim TK, Moeckel GW, McNiff JM, Chen L. PD-1H (VISTA)–mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus. Science Translational Medicine 2019, 11 PMID: 31826980, DOI: 10.1126/scitranslmed.aax1159.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArthritisAutoantibodiesAutoimmunityDendritic CellsHumansInflammationInterferon Type ILupus Erythematosus, CutaneousLupus Erythematosus, SystemicMembrane ProteinsMice, Inbred BALB CMice, Inbred MRL lprMyeloid CellsNeutrophilsReceptors, Antigen, T-CellSignal TransductionTerpenesUp-RegulationConceptsPlasmacytoid dendritic cellsDiscoid lupus erythematosusSystemic lupus erythematosusCutaneous lupus lesionsPD-1HLupus erythematosusLupus lesionsAutoimmune diseasesKO miceT cellsMyeloid cellsHuman systemic lupus erythematosusBALB/c backgroundCutaneous lupus erythematosusInappropriate immune responseProgression of lupusSystemic autoimmune diseaseImmune cell expansionSuppression of autoimmunityAgonistic monoclonal antibodyDeath-1 homologCutaneous lupusProinflammatory neutrophilsDendritic cellsDLE lesionsProgenitor-derived human endothelial cells evade alloimmunity by CRISPR/Cas9-mediated complete ablation of MHC expression
Merola J, Reschke M, Pierce RW, Qin L, Spindler S, Baltazar T, Manes TD, Lopez-Giraldez F, Li G, Bracaglia LG, Xie C, Kirkiles-Smith N, Saltzman WM, Tietjen GT, Tellides G, Pober JS. Progenitor-derived human endothelial cells evade alloimmunity by CRISPR/Cas9-mediated complete ablation of MHC expression. JCI Insight 2019, 4 PMID: 31527312, PMCID: PMC6824302, DOI: 10.1172/jci.insight.129739.Peer-Reviewed Original ResearchMeSH KeywordsAllograftsAnimalsBeta 2-MicroglobulinCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCell DifferentiationCells, CulturedCRISPR-Cas SystemsDisease Models, AnimalEndothelial CellsEndothelial Progenitor CellsFemaleFetal BloodGene Knockout TechniquesGraft RejectionHealthy VolunteersHumansIsoantibodiesKiller Cells, NaturalLymphocyte ActivationMiceMicrovesselsNuclear ProteinsOrgan TransplantationPrimary Cell CultureTissue EngineeringTrans-ActivatorsConceptsDonor-specific antibodiesClass II transactivatorEndothelial cellsMHC expressionAllogeneic natural killer (NK) cellsT effector memory cellsEffector memory T cellsClass IClass II major histocompatibility complex moleculesEffector memory cellsMHC molecule expressionMemory T cellsNatural killer cellsAlloreactive cytotoxic T lymphocytesAllogeneic endothelial cellsMajor histocompatibility complex moleculesCytotoxic T lymphocytesClass I MHC moleculesHistocompatibility complex moleculesI MHC moleculesAllogeneic CD4Donor leukocytesHuman endothelial cellsGraft perfusionKiller cellsImplication of DNA repair genes in Lynch-like syndrome
Xicola RM, Clark JR, Carroll T, Alvikas J, Marwaha P, Regan MR, Lopez-Giraldez F, Choi J, Emmadi R, Alagiozian-Angelova V, Kupfer SS, Ellis NA, Llor X. Implication of DNA repair genes in Lynch-like syndrome. Familial Cancer 2019, 18: 331-342. PMID: 30989425, PMCID: PMC6561810, DOI: 10.1007/s10689-019-00128-6.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overColorectal Neoplasms, Hereditary NonpolyposisDNA MethylationDNA Mismatch RepairDNA-Binding ProteinsFemaleGerm-Line MutationHeterozygoteHumansMaleMicrosatellite InstabilityMiddle AgedMismatch Repair Endonuclease PMS2MutL Protein Homolog 1MutS Homolog 2 ProteinSequence Analysis, DNAConceptsLLS patientsDistinct mutational signaturesGenome integrityLynch syndromeMutational signaturesMicrosatellite instabilityGermline mutationsColorectal cancerSequence analysisRepair genesSomatic MMR gene mutationsLS casesConsecutive CRC patientsMutational profileSomatic mutationsLynch-like syndromeL mutationMMR gene mutationsDNA repair genesFirst-degree relativesLikely pathogenic variantsSingle nucleotide variantsMLH1 promoter methylationTumor mutational profileExhibit microsatellite instability