2024
Transcriptional determinism and stochasticity contribute to the complexity of autism-associated SHANK family genes
Lu X, Ni P, Suarez-Meade P, Ma Y, Forrest E, Wang G, Wang Y, QuiƱones-Hinojosa A, Gerstein M, Jiang Y. Transcriptional determinism and stochasticity contribute to the complexity of autism-associated SHANK family genes. Cell Reports 2024, 43: 114376. PMID: 38900637, PMCID: PMC11328446, DOI: 10.1016/j.celrep.2024.114376.Peer-Reviewed Original ResearchSHANK family genesFamily genesLong-read sequencingCDNA captureTranscript structureDeleterious variantsGenomic studiesAbundant mRNAsTranscriptional dysregulationStochastic transcriptionStudies of neuropsychiatric disordersCausative genesTranscriptional profilesTranscriptional determinantsTranscriptomePostmortem brain tissueAutism spectrum disorderShank3 transcriptsTranscriptionGenesGenomeSHANK3Neuropsychiatric disordersSpectrum disorderAutism modelNovel protein-truncating variants of a chromatin-modifying gene MSL2 in syndromic neurodevelopmental disorders
Lu X, Ng K, Pinto e Vairo F, Collins J, Cohn R, Riley K, Agre K, Gavrilova R, Klee E, Rosenfeld J, Jiang Y. Novel protein-truncating variants of a chromatin-modifying gene MSL2 in syndromic neurodevelopmental disorders. European Journal Of Human Genetics 2024, 32: 879-883. PMID: 38702431, PMCID: PMC11219747, DOI: 10.1038/s41431-024-01576-0.Peer-Reviewed Original ResearchProtein-truncating variantsSyndromic neurodevelopmental disorderGenomic studiesChromatin-modifying enzymesAcetylation of histone H4Neurodevelopmental disordersLysine 34Histone 2BMono-ubiquitinationLysine 16Epigenetic machineryGenomic evaluationMSL2Exome sequencingHistone H4Epigenetic regulationModifying enzymesEpigenetic genesFunctional importanceGenesChromatinLysineDevelopmental disordersDysmorphic faceVariants
2022
Vitamin C epigenetically controls osteogenesis and bone mineralization
Thaler R, Khani F, Sturmlechner I, Dehghani SS, Denbeigh JM, Zhou X, Pichurin O, Dudakovic A, Jerez SS, Zhong J, Lee JH, Natarajan R, Kalajzic I, Jiang YH, Deyle DR, Paschalis EP, Misof BM, Ordog T, van Wijnen AJ. Vitamin C epigenetically controls osteogenesis and bone mineralization. Nature Communications 2022, 13: 5883. PMID: 36202795, PMCID: PMC9537512, DOI: 10.1038/s41467-022-32915-8.Peer-Reviewed Original ResearchConceptsSevere skeletal defectsBone-specific genesEpigenetic functionsChromatin accessibilityHistone demethylationDNA hydroxymethylationTranscriptional activityPro-osteogenic genesCell differentiationOsteogenic cell differentiationOsteogenic differentiationGenesSkeletal defectsBone phenotypeMurine boneOsteoblastogenesisDifferentiationKnockout miceGulo knockout miceVitamin C deficiencyTET1Collagen maturationPromoterDemethylationVitamin C
2021
Mutations of the histone linker H1ā4 in neurodevelopmental disorders and functional characterization of neurons expressing C-terminus frameshift mutant H1.4
Tremblay MW, Green MV, Goldstein BM, Aldridge AI, Rosenfeld JA, Streff H, Tan WD, Craigen W, Bekheirnia N, Al Tala S, West AE, Jiang YH. Mutations of the histone linker H1ā4 in neurodevelopmental disorders and functional characterization of neurons expressing C-terminus frameshift mutant H1.4. Human Molecular Genetics 2021, 31: 1430-1442. PMID: 34788807, PMCID: PMC9271223, DOI: 10.1093/hmg/ddab321.Peer-Reviewed Original ResearchConceptsC-terminusGenome-wide transcriptome analysisRahman syndromeUnderstanding of mutationsHistone H1.4Neuronal genesTranscriptome analysisAbnormal C-terminusFunctional categoriesFunctional characterizationNeuropeptide signalingN-terminusDe novo heterozygous mutationsSupport of pathogenicitySmall insertionsFunctional consequencesNovo heterozygous mutationRat hippocampal neuronsFrameshift mutationMutationsH1.4Rare genetic disorderSevere intellectual disabilityGenesClinical featuresTET1-mediated DNA hydroxymethylation regulates adult remyelination in mice
Moyon S, Frawley R, Marechal D, Huang D, Marshall-Phelps KLH, Kegel L, BĆøstrand SMK, Sadowski B, Jiang YH, Lyons DA, Mƶbius W, Casaccia P. TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice. Nature Communications 2021, 12: 3359. PMID: 34099715, PMCID: PMC8185117, DOI: 10.1038/s41467-021-23735-3.Peer-Reviewed Original ResearchConceptsDNA hydroxymethylationSolute carrier gene familyNeuro-glial communicationZebrafish mutantsGene familyTranscriptomic analysisMyelin interfaceTen-ElevenAdult central nervous systemCentral nervous systemTET1Overexpressing cellsAdult remyelinationExpression levelsMutantsHydroxymethylationGenesNervous systemRepairMyelin repairTransportersKnockoutMiceRegulationAged mice
2020
High genetic burden in 163 Chinese children with status epilepticus
Wang T, Wang J, Ma Y, Zhou H, Ding D, Li C, Du X, Jiang YH, Wang Y, Long S, Li S, Lu G, Chen W, Zhou Y, Zhou S, Wang Y. High genetic burden in 163 Chinese children with status epilepticus. Seizure 2020, 84: 40-46. PMID: 33278787, DOI: 10.1016/j.seizure.2020.10.032.Peer-Reviewed Original ResearchConceptsNon-genetic aetiologyGenetic etiologyMonogenic mutationsNumber variation analysisMolecular dataSingle geneNext-generation sequencingGene mutationsPathogenic genetic variantsUncertain significance variantsCausative variantsGenetic variantsMutationsDe novoGenetic burdenStatus epilepticusGenetic testing methodsHigher genetic burdenGenesMedical GeneticsMonogenic variantsVariation analysisVariantsTSC2Genetics
2019
Epigenetic therapy of PraderāWilli syndrome
Kim Y, Wang SE, Jiang YH. Epigenetic therapy of PraderāWilli syndrome. Translational Research 2019, 208: 105-118. PMID: 30904443, PMCID: PMC6527448, DOI: 10.1016/j.trsl.2019.02.012.Peer-Reviewed Original ResearchConceptsPWS mouse modelEpigenetic-based therapiesMaternal chromosomesImprinted gene regulationEHMT2/G9aLysine 9 methyltransferasePatient-derived fibroblastsPrader-Willi syndromeGene regulationMethyltransferase SETDB1Epigenetic mechanismsSmall molecule librariesPWS genesHigh-content screeningSame genePerinatal lethalityEpigenetic therapyFusion proteinMolecular mechanismsG9a inhibitorChromosomesSNORD116 clusterGenesMolecular defectsPatient iPSC
2018
5-Hydroxymethylcytosine alterations in the human postmortem brains of autism spectrum disorder
Cheng Y, Li Z, Manupipatpong S, Lin L, Li X, Xu T, Jiang YH, Shu Q, Wu H, Jin P. 5-Hydroxymethylcytosine alterations in the human postmortem brains of autism spectrum disorder. Human Molecular Genetics 2018, 27: 2955-2964. PMID: 29790956, PMCID: PMC6097011, DOI: 10.1093/hmg/ddy193.Peer-Reviewed Original ResearchConceptsEssential epigenetic markGenome-wide distributionCell-cell communicationEpigenetic marksDisease association analysisPsychiatric genesGenomic DNAAssociation analysisDhMRsPathogenesis of ASDHuman postmortem brainGenesHeterogeneous phenotypesPostmortem cerebellumEarly development stagesCI functionDevelopment stagesUnderlying mechanismPostmortem brainsClear underlying mechanismDNAPhenotypeSignificant fractionGroup of syndromesLarge groupEpigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1E and literature review
Duffney LJ, Valdez P, Tremblay MW, Cao X, Montgomery S, McConkieāRosell A, Jiang Y. Epigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1E and literature review. American Journal Of Medical Genetics Part B Neuropsychiatric Genetics 2018, 177: 426-433. PMID: 29704315, PMCID: PMC5980735, DOI: 10.1002/ajmg.b.32631.Peer-Reviewed Original ResearchConceptsLinker proteinH1 linker histonesLinker histone proteinFamily member EChromatin organizationEpigenetic machineryHistone proteinsEpigenetic regulationLinker histonesNucleosome packagingLoss of functionDeleterious mutationsCandidate genesExpression studiesHistone writersWhole-exome sequencingHuman diseasesGenesProteinMutationsProtein expressionExome sequencingGenetic mutationsMember EHIST1H1ESystematic reconstruction of autism biology from massive genetic mutation profiles
Luo W, Zhang C, Jiang YH, Brouwer CR. Systematic reconstruction of autism biology from massive genetic mutation profiles. Science Advances 2018, 4: e1701799. PMID: 29651456, PMCID: PMC5895441, DOI: 10.1126/sciadv.1701799.Peer-Reviewed Original ResearchConceptsComplex genetic diseasesWhole-exome studiesHundreds of variantsGene functionNovel genesSubpathway levelGene groupsSame geneCanonical pathwaysPathway levelAutism-related mutationsSecond messenger systemsGenesGenetic diseasesASD biologyCAMP second messenger systemBiologyGenetic associationMutationsMultiple independent analysesMost variantsPathwayVariant levelsSynaptic functionGenetic mutation profiles
2016
Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of PraderāWilli syndrome
Kim Y, Lee HM, Xiong Y, Sciaky N, Hulbert SW, Cao X, Everitt JI, Jin J, Roth BL, Jiang YH. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of PraderāWilli syndrome. Nature Medicine 2016, 23: 213-222. PMID: 28024084, PMCID: PMC5589073, DOI: 10.1038/nm.4257.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCell LineDisease Models, AnimalEnzyme InhibitorsEpigenesis, GeneticFemaleFibroblastsGene ExpressionGenomic ImprintingHistone CodeHistone-Lysine N-MethyltransferaseHumansImmunohistochemistryMaleMethylationMicePrader-Willi SyndromeQuinazolinesReverse Transcriptase Polymerase Chain ReactionRNA, Small NucleolarSnRNP Core ProteinsSurvival RateUbiquitin-Protein Ligases
2015
Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios
Zhu X, Petrovski S, Xie P, Ruzzo EK, Lu YF, McSweeney KM, Ben-Zeev B, Nissenkorn A, Anikster Y, Oz-Levi D, Dhindsa RS, Hitomi Y, Schoch K, Spillmann RC, Heimer G, Marek-Yagel D, Tzadok M, Han Y, Worley G, Goldstein J, Jiang YH, Lancet D, Pras E, Shashi V, McHale D, Need AC, Goldstein DB. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genetics In Medicine 2015, 17: 774-781. PMID: 25590979, PMCID: PMC4791490, DOI: 10.1038/gim.2014.191.Peer-Reviewed Original ResearchConceptsDisease genesWhole-exome sequencingDamaging de novo mutationsNovel bioinformatics approachNovel disease genesAppropriate bioinformatics analysisNew gene-disease associationsClinical sequence dataGene-disease associationsDisease-causing genesNovel genesIntolerant genesBioinformatics approachSequence dataBioinformatics analysisDe novo mutationsGenomic interpretationPattern of genotypesSimilar phenotypeGenesGenetic diseasesDiagnostic genotypesUndiagnosed genetic diseasesNovo mutationsCandidate genotypes
2013
Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing
Jiang YH, Yuen RK, Jin X, Wang M, Chen N, Wu X, Ju J, Mei J, Shi Y, He M, Wang G, Liang J, Wang Z, Cao D, Carter MT, Chrysler C, Drmic IE, Howe JL, Lau L, Marshall CR, Merico D, Nalpathamkalam T, Thiruvahindrapuram B, Thompson A, Uddin M, Walker S, Luo J, Anagnostou E, Zwaigenbaum L, Ring RH, Wang J, Lajonchere C, Wang J, Shih A, Szatmari P, Yang H, Dawson G, Li Y, Scherer SW. Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing. American Journal Of Human Genetics 2013, 93: 249-263. PMID: 23849776, PMCID: PMC3738824, DOI: 10.1016/j.ajhg.2013.06.012.Peer-Reviewed Original ResearchConceptsWhole-genome sequencingASD risk genesGenetic variantsThorough bioinformatics analysisRisk genesDe novoRelevant genetic variantsBioinformatics analysisDeleterious variantsHigh heritabilityGenomic heterogeneityGenesPutative mutationsMutationsNovo mutationsGenetic causeASD probandsSequencingNovoFamilyCHARGE syndromeVariantsUnreported mutationsCAPRIN1Modeling Autism by SHANK Gene Mutations in Mice
Jiang YH, Ehlers MD. Modeling Autism by SHANK Gene Mutations in Mice. Neuron 2013, 78: 8-27. PMID: 23583105, PMCID: PMC3659167, DOI: 10.1016/j.neuron.2013.03.016.Peer-Reviewed Original ResearchConceptsSHANK mutationsRecent human genetic studiesSHANK family genesHuman genetic studiesPostsynaptic densityPathophysiology of ASDProtein complexesConserved featuresFamily genesFamily proteinsGene productsDivergent phenotypesSame geneExcitatory glutamatergic synapsesMolecular diversityHuman autism spectrum disorderMouse mutantsMolecular geneticsGenetic studiesMouse phenotypeSynaptic dysfunctionIdiopathic autism spectrum disorderSuch mutationsCausative genesGenes
2012
Mutations of ANK3 identified by exome sequencing are associated with autism susceptibility
Bi C, Wu J, Jiang T, Liu Q, Cai W, Yu P, Cai T, Zhao M, Jiang Y, Sun ZS. Mutations of ANK3 identified by exome sequencing are associated with autism susceptibility. Human Mutation 2012, 33: 1635-1638. PMID: 22865819, DOI: 10.1002/humu.22174.Peer-Reviewed Original ResearchConceptsExtensive bioinformatics analysisNext-generation sequencing technologiesExtreme genetic heterogeneityStrong genetic etiologyGene discoveryWhole-exome sequencesDifferent missense mutationsBioinformatics analysisSequencing technologiesAutism susceptibilityMissense mutationsANK3Genetic heterogeneityMutationsNovo mutationsExome sequencingMolecular pathophysiologyGenetic causeGenetic etiologyASD susceptibilitySynaptic functionNovel mutationsNeurodevelopmental disordersGenesSequencing
2004
EPIGENETICS AND HUMAN DISEASE
Jiang YH, Bressler J, Beaudet AL. EPIGENETICS AND HUMAN DISEASE. Annual Review Of Genomics And Human Genetics 2004, 5: 479-510. PMID: 15485357, DOI: 10.1146/annurev.genom.5.061903.180014.Peer-Reviewed Original ResearchConceptsHuman diseasesComplex disease traitsRole of epigeneticsHeritable changesChromatin structureGenomic imprintingDNA sequencesEpigenetic phenotypesDisease traitsGene expressionImprinting defectsGenetic scansBeckwith-Wiedemann syndromeGenesDisease phenotypeUniparental disomyDe novoEpigeneticsPhenotypeGenetic disordersExpressionChromatinEpimutationsTraitsMutationsA mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A
Jiang Y, Sahoo T, Michaelis RC, Bercovich D, Bressler J, Kashork CD, Liu Q, Shaffer LG, Schroer RJ, Stockton DW, Spielman RS, Stevenson RE, Beaudet AL. A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. American Journal Of Medical Genetics Part A 2004, 131A: 1-10. PMID: 15389703, DOI: 10.1002/ajmg.a.30297.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAutistic DisorderBlotting, SouthernBlotting, WesternBrainChromosome AberrationsChromosomes, Human, Pair 15Deoxyribonuclease BamHIDeoxyribonuclease HpaIIDNADNA MethylationFemaleGene DuplicationHumansIn Situ Hybridization, FluorescenceMaleModels, GeneticMutationPedigreeUbiquitin-Protein LigasesConceptsOligogenic inheritanceComplex disease traitsGenome-wide studiesAbnormal DNA methylationE6-AP proteinDe novoGenetic modelsRole of UBE3AUbiquitin ligaseDNA methylationEpigenetic abnormalitiesDisease traitsAutism brainPaternal duplicationChromosome 15qUBE3AGenetic contributionRegion downstreamGenesOligogenic modelInheritanceProteinNovoLigaseBrain samples
2003
Disruption of the genomic imprint in trans with homologous recombination at Snrpn in ES cells
Tsai T, Bressler J, Jiang Y, Beaudet AL. Disruption of the genomic imprint in trans with homologous recombination at Snrpn in ES cells. Genesis 2003, 37: 151-161. PMID: 14666508, DOI: 10.1002/gene.10237.Peer-Reviewed Original ResearchConceptsPaternal alleleImprinting centerMaternal alleleSomatic mammalian cellsTrans-acting factorsActivation of expressionSNURF-SNRPN geneMouse ES cellsChromatin domainsGenomic imprintsImprinted domainMammalian cellsHomologous recombinationGene targetingHomologous associationES cellsComplete demethylationSNURF-SNRPNPrader-Willi syndromeExon 2AllelesGenesRecombinantsCellsDomain
2002
A Rheostat Model for a Rapid and Reversible Form of Imprinting-Dependent Evolution
Beaudet AL, Jiang YH. A Rheostat Model for a Rapid and Reversible Form of Imprinting-Dependent Evolution. American Journal Of Human Genetics 2002, 70: 1389-1397. PMID: 11992247, PMCID: PMC379123, DOI: 10.1086/340969.Peer-Reviewed Original ResearchConceptsGenomic imprintingRheostat modelGene expressionSelective advantageNon-Mendelian inheritanceDosage-sensitive lociMajority of variantsEpigenetic variantsEvolutionary advantageForm of evolutionSilent alleleImprintingPhenotypeIntegrated mechanismEnhanced adaptabilityExpressionDeleterious effectsEvolutionMammalsHypervariabilityWide continuumGenesMendelianLociMechanism
1998
Imprinting in Angelman and Prader-Willi syndromes
Jiang Y, Tsai T, Bressler J, Beaudet A. Imprinting in Angelman and Prader-Willi syndromes. Current Opinion In Genetics & Development 1998, 8: 334-342. PMID: 9691003, DOI: 10.1016/s0959-437x(98)80091-9.Peer-Reviewed Original ResearchConceptsE6-AP ubiquitin-protein ligaseUbiquitin-protein ligaseAnalysis of methylationTissue-specific imprintingAngelman syndromeSNRPN promoterPrader-Willi syndromeAS genesMaternal chromosomesGene expressionGenomic sequencingPoint mutationsGenesBisulfite methodMethylationCandidate regionsImprintingHippocampal neuronsDrosophilaNecdinSNRPNLigaseChromosomesPromoterPurkinje cells