Featured Publications
Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail
Sexton J, Potchernikov T, Bibeau J, Casanova-Sepúlveda G, Cao W, Lou H, Boggon T, De La Cruz E, Turk B. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. Nature Communications 2024, 15: 1426. PMID: 38365893, PMCID: PMC10873347, DOI: 10.1038/s41467-024-45878-9.Peer-Reviewed Original ResearchConceptsN-terminal regionActin bindingSequence requirementsLIM kinaseAnalysis of individual variantsInactivates cofilinS. cerevisiaeRegulatory tailFamily proteinsActin depolymerizationPhosphorylation sitesKinase recognitionSequence variantsInhibitory phosphorylationCofilinN-terminusIndividual variantsFunctional constraintsActinDisordered sequencesPhosphorylationSequenceBiochemical analysisSequence constraintsKinaseLinear motif specificity in signaling through p38α and ERK2 mitogen–activated protein kinases
Robles J, Lou H, Shi G, Pan P, Turk B. Linear motif specificity in signaling through p38α and ERK2 mitogen–activated protein kinases. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2316599120. PMID: 37988460, PMCID: PMC10691213, DOI: 10.1073/pnas.2316599120.Peer-Reviewed Original ResearchConceptsExtracellular signal-regulated kinase 2Docking motifERK2 mitogen-activated protein kinaseSignal-regulated kinase 2Protein kinase cascadeMitogen-activated protein kinaseFull-length proteinMAPK substratesEukaryotic cellsKinase cascadeMAPK networkLinear motifsProtein kinaseMotif specificityProteomic librariesDocking siteAcidic residuesKinase 2Diverse stimuliCellular responsesP38αDocking interfaceHigh net chargeMotifSelective interactionAn atlas of substrate specificities for the human serine/threonine kinome
Johnson J, Yaron T, Huntsman E, Kerelsky A, Song J, Regev A, Lin T, Liberatore K, Cizin D, Cohen B, Vasan N, Ma Y, Krismer K, Robles J, van de Kooij B, van Vlimmeren A, Andrée-Busch N, Käufer N, Dorovkov M, Ryazanov A, Takagi Y, Kastenhuber E, Goncalves M, Hopkins B, Elemento O, Taatjes D, Maucuer A, Yamashita A, Degterev A, Uduman M, Lu J, Landry S, Zhang B, Cossentino I, Linding R, Blenis J, Hornbeck P, Turk B, Yaffe M, Cantley L. An atlas of substrate specificities for the human serine/threonine kinome. Nature 2023, 613: 759-766. PMID: 36631611, PMCID: PMC9876800, DOI: 10.1038/s41586-022-05575-3.Peer-Reviewed Original ResearchConceptsSer/ThrHuman Ser/ThrSubstrate specificityPhosphorylation eventsProtein serine/threonine kinaseWidespread post-translational modificationSerine/threonine kinasePutative protein kinaseSubstrate sequence specificityIntrinsic substrate specificityPost-translational modificationsThreonine phosphorylationGenetic perturbationsThreonine kinasePhosphorylation sitesHuman genomeProtein phosphorylationProtein kinaseSequence specificityBiological pathwaysHuman diseasesNegative selectivityKinaseUnexpected insightsKinomeProteome-wide screening for mitogen-activated protein kinase docking motifs and interactors
Shi G, Song C, Torres Robles J, Salichos L, Lou H, Lam T, Gerstein M, Turk B. Proteome-wide screening for mitogen-activated protein kinase docking motifs and interactors. Science Signaling 2023, 16: eabm5518. PMID: 36626580, PMCID: PMC9995140, DOI: 10.1126/scisignal.abm5518.Peer-Reviewed Original ResearchConceptsMitogen-activated protein kinaseDocking motifSequence motifsDocking sequenceShort linear sequence motifsLinear sequence motifsSubstrate recruitmentHuman proteomeProtein kinaseCatalytic cleftExchange mutantsEssential functionsCultured cellsScreening pipelineWide screeningInteractorsMotifSequenceLimited repertoireSelective bindingInteractomeCombinatorial librariesMKK6ProteomeMKK7Homing in: Mechanisms of Substrate Targeting by Protein Kinases
Miller CJ, Turk BE. Homing in: Mechanisms of Substrate Targeting by Protein Kinases. Trends In Biochemical Sciences 2018, 43: 380-394. PMID: 29544874, PMCID: PMC5923429, DOI: 10.1016/j.tibs.2018.02.009.Peer-Reviewed Original ResearchConceptsProtein kinaseReversible post-translational modificationKinase substrate specificityCellular signaling networksPost-translational modificationsSimilar catalytic domainsMode of regulationSignaling outputsSubstrate repertoireSubstrate targetingSignaling networksPhosphorylation sitesProtein phosphorylationCatalytic domainSubstrate specificityKinaseCell behaviorEukaryotesRecent progressPhosphorylationAnticancer drugsSitesRegulationMechanismTargetingThe intrinsic substrate specificity of the human tyrosine kinome
Yaron-Barir T, Joughin B, Huntsman E, Kerelsky A, Cizin D, Cohen B, Regev A, Song J, Vasan N, Lin T, Orozco J, Schoenherr C, Sagum C, Bedford M, Wynn R, Tso S, Chuang D, Li L, Li S, Creixell P, Krismer K, Takegami M, Lee H, Zhang B, Lu J, Cossentino I, Landry S, Uduman M, Blenis J, Elemento O, Frame M, Hornbeck P, Cantley L, Turk B, Yaffe M, Johnson J. The intrinsic substrate specificity of the human tyrosine kinome. Nature 2024, 629: 1174-1181. PMID: 38720073, PMCID: PMC11136658, DOI: 10.1038/s41586-024-07407-y.Peer-Reviewed Original ResearchIntrinsic substrate specificityTyr kinasesTyr sitesSequence specificityProtein Tyr kinasesSubstrate sequence specificitySites of phosphorylationPhosphorylation of proteinsMulticellular eukaryotesMetazoan organismsMotif preferencesPhosphoproteomic datasetsSubstrate sequenceTyrosine (Tyr) residuesKinase specificityPattern of residuesSubstrate specificitySignaling networksYears of evolutionPeptide arraysTyrosine kinomeAnti-cancer drugsOncogenic variantsTyr residuesKinase
2024
Aurora B controls anaphase onset and error-free chromosome segregation in trypanosomes
Ballmer D, Lou H, Ishii M, Turk B, Akiyoshi B. Aurora B controls anaphase onset and error-free chromosome segregation in trypanosomes. Journal Of Cell Biology 2024, 223: e202401169. PMID: 39196069, PMCID: PMC11354203, DOI: 10.1083/jcb.202401169.Peer-Reviewed Original ResearchConceptsAurora BAnaphase onsetMetaphase-to-anaphase transitionPromote mitotic exitComplex regulatory circuitryEarly-branching eukaryotesKinetochore-microtubule attachmentsAurora B activityDelays anaphase onsetAurora B kinaseCell cycle progressionSpindle assembly checkpointKinetochore proteinsMitotic exitOuter kinetochoreChromosome segregationChromosome missegregationRegulatory circuitrySpindle microtubulesAurora B inhibitionCycle progressionTrypanosoma bruceiAssembly checkpointB kinaseKinetochore
2023
Autoregulation of the LIM kinases by their PDZ domain
Casanova-Sepúlveda G, Sexton J, Turk B, Boggon T. Autoregulation of the LIM kinases by their PDZ domain. Nature Communications 2023, 14: 8441. PMID: 38114480, PMCID: PMC10730565, DOI: 10.1038/s41467-023-44148-4.Peer-Reviewed Original Research
2022
Tousled-like kinase 2 targets ASF1 histone chaperones through client mimicry
Simon B, Lou HJ, Huet-Calderwood C, Shi G, Boggon TJ, Turk BE, Calderwood DA. Tousled-like kinase 2 targets ASF1 histone chaperones through client mimicry. Nature Communications 2022, 13: 749. PMID: 35136069, PMCID: PMC8826447, DOI: 10.1038/s41467-022-28427-0.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceCatalytic DomainCell Cycle ProteinsConserved SequenceCrystallography, X-RayHistonesHumansMolecular ChaperonesMolecular Docking SimulationMolecular MimicryMutagenesisPeptide LibraryPhosphorylationProtein KinasesRecombinant ProteinsSubstrate SpecificityConceptsTousled-like kinaseDNA replication-coupled nucleosome assemblyNuclear serine-threonine kinaseReplication-coupled nucleosome assemblyHistone chaperone proteinsGlobular N-terminal domainProper cell divisionPhosphorylation site motifsSerine-threonine kinaseShort sequence motifsAsf1 histone chaperonesC-terminal tailN-terminal domainHistone chaperonesGenome maintenanceNucleosome assemblySequence motifsChaperone proteinsNon-catalytic interactionsCatalytic domainCell divisionSite motifN-terminusStringent selectivityCell growth
2021
PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK
Cho E, Lou HJ, Kuruvilla L, Calderwood DA, Turk BE. PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK. Cell Reports 2021, 34: 108928. PMID: 33789117, PMCID: PMC8068315, DOI: 10.1016/j.celrep.2021.108928.Peer-Reviewed Original ResearchConceptsProtein kinase cascadeCore oncogenic pathwaysKey negative regulatorOncogenic ERKERK pathway activationCrosstalk regulationCentral kinaseKinase cascadePhosphorylation sitesRegulatory subunitRaf-MEKNegative regulatorERK pathwayDrug targetsOncogenic pathwaysMEKMEK inhibitorsDephosphorylationPathway activationPPP6CPhosphatasePathwayERKHyperphosphorylationCascade