2024
Brain state and cortical layer-specific mechanisms underlying perception at threshold
Morton M, Denagamage S, Blume I, Reynolds J, Jadi M, Nandy A. Brain state and cortical layer-specific mechanisms underlying perception at threshold. ELife 2024, 12: rp91722. PMID: 39556415, PMCID: PMC11573349, DOI: 10.7554/elife.91722.Peer-Reviewed Original ResearchConceptsHIT trialsProcessing of sensory stimuliStable retinal imageBehavioral statesExcitatory neuronsNeural activitySpontaneous activityElevated synchronyPerceptual thresholdsCortical layersMeasures of stateElectrophysiological activitySensory stimuliRetinal imagesVisual area V4TrialsHeightened arousalTarget stimuliStimulus identityElevated arousalSuperficial layersFeed-forward pathwayStimulus changeCortical columnsIdentical stimuliBrain state and cortical layer-specific mechanisms underlying perception at threshold
Morton M, Denagamage S, Blume I, Reynolds J, Jadi M, Nandy A. Brain state and cortical layer-specific mechanisms underlying perception at threshold. ELife 2024, 12 DOI: 10.7554/elife.91722.4.Peer-Reviewed Original ResearchHIT trialsProcessing of sensory stimuliStable retinal imageBehavioral statesExcitatory neuronsNeural activitySpontaneous activityElevated synchronyPerceptual thresholdsCortical layersMeasures of stateElectrophysiological activitySensory stimuliRetinal imagesVisual area V4TrialsHeightened arousalTarget stimuliStimulus identityElevated arousalSuperficial layersFeed-forward pathwayStimulus changeCortical columnsIdentical stimuliDevelopment of a Marmoset Apparatus for Automated Pulling to study cooperative behaviors
Meisner O, Shi W, Fagan N, Greenwood J, Jadi M, Nandy A, Chang S. Development of a Marmoset Apparatus for Automated Pulling to study cooperative behaviors. ELife 2024, 13 DOI: 10.7554/elife.97088.3.Peer-Reviewed Original ResearchDevelopment of a Marmoset Apparatus for Automated Pulling to study cooperative behaviors
Meisner O, Shi W, Fagan N, Greenwood J, Jadi M, Nandy A, Chang S. Development of a Marmoset Apparatus for Automated Pulling to study cooperative behaviors. ELife 2024, 13: rp97088. PMID: 39466838, PMCID: PMC11517257, DOI: 10.7554/elife.97088.Peer-Reviewed Original ResearchSpatial context non-uniformly modulates inter-laminar information flow in the primary visual cortex
Xu X, Morton M, Denagamage S, Hudson N, Nandy A, Jadi M. Spatial context non-uniformly modulates inter-laminar information flow in the primary visual cortex. Neuron 2024 PMID: 39442514, DOI: 10.1016/j.neuron.2024.09.021.Peer-Reviewed Original ResearchPrimary visual cortexVisual cortexInformation flowCommunication subspaceDimensionality reduction approachSensory hierarchyOrganization of objectsOutput layerSpatial organization of objectsInformation propagationPerceptual degradationCortical connectivityEffective feedback signalActivity of neuronal ensemblesContextual signalsInfluence information flowSpatial configurationNeuronal ensemblesNon-uniformityConfigurationReduction approachPredictive Remapping in Neural Networks: A Model Based on Corollary Discharge Signals for Visual Continuity Across Saccades
Nandy A, Xu X, Jadi M. Predictive Remapping in Neural Networks: A Model Based on Corollary Discharge Signals for Visual Continuity Across Saccades. Journal Of Vision 2024, 24: 1401. DOI: 10.1167/jov.24.10.1401.Peer-Reviewed Original ResearchSpatial configuration of contextual stimuli influences inter-laminar interactions in macaque primary visual cortex
Xu X, Morton M, Hudson N, Nandy A, Jadi M. Spatial configuration of contextual stimuli influences inter-laminar interactions in macaque primary visual cortex. Journal Of Vision 2024, 24: 338. DOI: 10.1167/jov.24.10.338.Peer-Reviewed Original ResearchGeometry of anisotropic contextual interactions in the visual cortex places fundamental limits on spatial vision.
Morton M, Denagamage S, Hudson N, Nandy A. Geometry of anisotropic contextual interactions in the visual cortex places fundamental limits on spatial vision. Journal Of Vision 2024, 24: 1432. DOI: 10.1167/jov.24.10.1432.Peer-Reviewed Original ResearchCorrigendum to “The orbitofrontal cortex: A goal-directed cognitive map framework for social and non-social behaviors” [Neurobiol. Learn. Mem. 203 (2023) 107793]
Shi W, Meisner O, Blackmore S, Jadi M, Nandy A, Chang S. Corrigendum to “The orbitofrontal cortex: A goal-directed cognitive map framework for social and non-social behaviors” [Neurobiol. Learn. Mem. 203 (2023) 107793]. Neurobiology Of Learning And Memory 2024, 214: 107973. PMID: 39174377, PMCID: PMC11426288, DOI: 10.1016/j.nlm.2024.107973.Peer-Reviewed Original ResearchWidespread receptive field remapping in early primate visual cortex
Denagamage S, Morton M, Hudson N, Nandy A. Widespread receptive field remapping in early primate visual cortex. Cell Reports 2024, 43: 114557. PMID: 39058592, PMCID: PMC11484688, DOI: 10.1016/j.celrep.2024.114557.Peer-Reviewed Original ResearchEarly visual cortexVisual cortexReceptive fieldsArea V2Tuning properties of neuronsPrimate visual cortexCued saccade taskVisual area V2Tuning propertiesPredictive remappingProperties of neuronsEye movementsRemappingCortical layersCell typesNeuronsSaccadic eye movementsCortical areasPerceptual stabilityCortexCurrent modelsSaccade taskBrain-state mediated modulation of inter-laminar dependencies in visual cortex
Das A, Sheffield A, Nandy A, Jadi M. Brain-state mediated modulation of inter-laminar dependencies in visual cortex. Nature Communications 2024, 15: 5105. PMID: 38877026, PMCID: PMC11178935, DOI: 10.1038/s41467-024-49144-w.Peer-Reviewed Original ResearchConceptsBrain state fluctuationsUnique dependenceSpatial attentionBehavioral outcomesState fluctuationsDeployment of spatial attentionDeployment of attentionBehaviorally relevant objectsComputational goalCluttered environmentsVisual cortexObject recognitionExcitatory populationHierarchical computationVisual area V4Internal fluctuationsDependenceRelevant objectsModulation patternsTask demandsEnhance information transferCortical networksNeural activityInformation transferArea V4
2023
Laminar compartmentalization of attention modulation in area V4 aligns with the demands of visual processing hierarchy in the cortex
Wang X, Nandy A, Jadi M. Laminar compartmentalization of attention modulation in area V4 aligns with the demands of visual processing hierarchy in the cortex. Scientific Reports 2023, 13: 19558. PMID: 37945642, PMCID: PMC10636153, DOI: 10.1038/s41598-023-46722-8.Peer-Reviewed Original ResearchConceptsArea V4Early visual areasVisual areasPutative excitatory neuronsLow-contrast stimuliVisual area V4Superficial neuronsExcitatory neuronsInhibitory neuronsLaminar differencesVisual processing hierarchyCortical layersContrast stimuliProcessing hierarchyNeuronsNeural responsesSuperficial layersAttention modulationCritical hubHighest areaAttentional modulationDeeper layersVisual hierarchyAttentive stateLater stagesLaminar mechanisms of saccadic suppression in primate visual cortex
Denagamage S, Morton M, Hudson N, Reynolds J, Jadi M, Nandy A. Laminar mechanisms of saccadic suppression in primate visual cortex. Cell Reports 2023, 42: 112720. PMID: 37392385, PMCID: PMC10528056, DOI: 10.1016/j.celrep.2023.112720.Peer-Reviewed Original ResearchConceptsSaccadic suppressionFiring rateInter-neuronal correlationsLocal inhibitory activityCortical firing ratesEye movementsSaccadic eye movementsPutative inhibitory interneuronsDistinct neural subpopulationsVisual cortical networkPrimate visual cortexVisual area V4Inhibitory interneuronsCortical circuitryVisual cortexSaccade onsetArea V4Single neuronsCortical networksNeural subpopulationsVisual stabilityNeuronsInhibitory activityTemporary reductionVisual sensitivityThe orbitofrontal cortex: A goal-directed cognitive map framework for social and non-social behaviors
Shi W, Meisner O, Blackmore S, Jadi M, Nandy A, Chang S. The orbitofrontal cortex: A goal-directed cognitive map framework for social and non-social behaviors. Neurobiology Of Learning And Memory 2023, 203: 107793. PMID: 37353191, PMCID: PMC10527225, DOI: 10.1016/j.nlm.2023.107793.Peer-Reviewed Original ResearchConceptsOrbitofrontal cortexOFC functionCognitive mapsOFC neuronsNon-social domainCore brain areasNon-social behaviorsReward-based behaviorsValues-based behaviorSocial behaviorSocial contextBrain areasBehavioral contextSocial functionComplex representationSingle subjectCortexBehaviorTremendous knowledgeIntegrated viewContextTask spaceMAP frameworkRepresentationWide array
2016
Laminar Organization of Attentional Modulation in Macaque Visual Area V4
Nandy AS, Nassi JJ, Reynolds JH. Laminar Organization of Attentional Modulation in Macaque Visual Area V4. Neuron 2016, 93: 235-246. PMID: 27989456, PMCID: PMC5217483, DOI: 10.1016/j.neuron.2016.11.029.Peer-Reviewed Original ResearchNeurons in Macaque Area V4 Are Tuned for Complex Spatio-Temporal Patterns
Nandy AS, Mitchell JF, Jadi MP, Reynolds JH. Neurons in Macaque Area V4 Are Tuned for Complex Spatio-Temporal Patterns. Neuron 2016, 91: 920-930. PMID: 27499085, PMCID: PMC4990477, DOI: 10.1016/j.neuron.2016.07.026.Peer-Reviewed Original Research
2013
Rapid and Persistent Adaptability of Human Oculomotor Control in Response to Simulated Central Vision Loss
Kwon M, Nandy AS, Tjan BS. Rapid and Persistent Adaptability of Human Oculomotor Control in Response to Simulated Central Vision Loss. Current Biology 2013, 23: 1663-1669. PMID: 23954427, PMCID: PMC3773263, DOI: 10.1016/j.cub.2013.06.056.Peer-Reviewed Original ResearchConceptsCentral vision lossVision lossOculomotor systemHigh acuity visionHuman oculomotor controlRehabilitation regimenFixation locusClinical observationsBallistic eye movementsCentral visionOculomotor referenceArtificial scotomaSimulated scotomaScotomaHuman retinaPeripheral locusOculomotor controlEye movementsFoveaPatientsFoveal visionSaccadesFixationRegimenRetinaThe Fine Structure of Shape Tuning in Area V4
Nandy AS, Sharpee TO, Reynolds JH, Mitchell JF. The Fine Structure of Shape Tuning in Area V4. Neuron 2013, 78: 1102-1115. PMID: 23791199, PMCID: PMC3694358, DOI: 10.1016/j.neuron.2013.04.016.Peer-Reviewed Original Research
2012
Saccade-confounded image statistics explain visual crowding
Nandy AS, Tjan BS. Saccade-confounded image statistics explain visual crowding. Nature Neuroscience 2012, 15: 463-469. PMID: 22231425, PMCID: PMC3288353, DOI: 10.1038/nn.3021.Peer-Reviewed Original Research
2009
The Angry Brain: Neural Correlates of Anger, Angry Rumination, and Aggressive Personality
Denson T, Pedersen W, Ronquillo J, Nandy A. The Angry Brain: Neural Correlates of Anger, Angry Rumination, and Aggressive Personality. Journal Of Cognitive Neuroscience 2009, 21: 734-744. PMID: 18578600, DOI: 10.1162/jocn.2009.21051.Peer-Reviewed Original ResearchConceptsSelf-reported ruminationAngry ruminationIndividual differencesAggressive personalityDorsal anterior cingulate cortexPresent fMRI experimentAggressive behaviorSelf-reported feelingsMedial prefrontal cortexAnterior cingulate cortexNeural correlatesNeural processesNeural regionsFMRI experimentGeneral aggressionPrefrontal cortexRuminationSubjective experienceCingulate cortexNeural circuitryAngerNeural pathwaysAggressionPersonalityCortex