2020
Risk factors for recurrent tuberculosis after successful treatment in a high burden setting: a cohort study
Cudahy PGT, Wilson D, Cohen T. Risk factors for recurrent tuberculosis after successful treatment in a high burden setting: a cohort study. BMC Infectious Diseases 2020, 20: 789. PMID: 33097000, PMCID: PMC7585300, DOI: 10.1186/s12879-020-05515-4.Peer-Reviewed Original ResearchConceptsM. tuberculosis infectionRecurrent tuberculosisSuccessful treatmentTuberculosis recurrenceHazard ratioSmear gradeTuberculosis infectionRisk factorsSmear-positive pulmonary tuberculosisCox proportional hazards modelSputum smear gradeRepetitive unit-variable number tandem repeat (MIRU-VNTR) typingHigh-burden settingsRisk of recurrenceProportional hazards modelSuccessful treatment completionRecurrent diseaseCohort studyPulmonary tuberculosisBurden settingsClinical presentationRecurrent episodesInitial episodeNumber tandem repeat typingTreatment completion
2016
Within-Host Heterogeneity of Mycobacterium tuberculosis Infection Is Associated With Poor Early Treatment Response: A Prospective Cohort Study
Cohen T, Chindelevitch L, Misra R, Kempner ME, Galea J, Moodley P, Wilson D. Within-Host Heterogeneity of Mycobacterium tuberculosis Infection Is Associated With Poor Early Treatment Response: A Prospective Cohort Study. The Journal Of Infectious Diseases 2016, 213: 1796-1799. PMID: 26768249, PMCID: PMC4857469, DOI: 10.1093/infdis/jiw014.Peer-Reviewed Original ResearchConceptsMonths of treatmentMycobacterium tuberculosis infectionTuberculosis infectionTreatment responsePoor early treatment responseProspective cohort studyInitiation of treatmentM. tuberculosis infectionRepetitive units-variable numberEarly treatment responsePersistent culture positivityCohort studyClinical managementCulture positivityHigher oddsInfectionTuberculosisPrevalenceTreatmentMonthsResponsePatientsKwaZulu-NatalHost heterogeneityPositivity
2014
Magnitude and sources of bias in the detection of mixed strain M. tuberculosis infection
Plazzotta G, Cohen T, Colijn C. Magnitude and sources of bias in the detection of mixed strain M. tuberculosis infection. Journal Of Theoretical Biology 2014, 368: 67-73. PMID: 25553967, PMCID: PMC7011203, DOI: 10.1016/j.jtbi.2014.12.009.Peer-Reviewed Original ResearchConceptsMixed infectionsM. tuberculosis infectionIncidence of TBOutcome of treatmentPopulation-level interventionsFraction of casesTuberculosis infectionMinority strainsActual prevalenceInfected individualsInfectionStudy designMycobacterium tuberculosisPrevalenceSputumTuberculosisDistinct strainsDifferent strainsSources of biasPrevious studiesPatientsSpecific reasonsIncidenceIndividuals
2012
Mixed-Strain Mycobacterium tuberculosis Infections and the Implications for Tuberculosis Treatment and Control
Cohen T, van Helden PD, Wilson D, Colijn C, McLaughlin MM, Abubakar I, Warren RM. Mixed-Strain Mycobacterium tuberculosis Infections and the Implications for Tuberculosis Treatment and Control. Clinical Microbiology Reviews 2012, 25: 708-719. PMID: 23034327, PMCID: PMC3485752, DOI: 10.1128/cmr.00021-12.Peer-Reviewed Original ResearchConceptsMixed infectionsTuberculosis infectionM. tuberculosis infectionTuberculosis control strategiesMycobacterium tuberculosis infectionTreatment of patientsMultiple distinct strainsTuberculosis treatmentInfectionMycobacterium tuberculosisEpidemiological importanceDistinct strainsTreatmentNumerous studiesPatientsTuberculosisDiagnosisHighlight challengesIndividuals
2011
Modelling the performance of isoniazid preventive therapy for reducing tuberculosis in HIV endemic settings: the effects of network structure
Mills HL, Cohen T, Colijn C. Modelling the performance of isoniazid preventive therapy for reducing tuberculosis in HIV endemic settings: the effects of network structure. Journal Of The Royal Society Interface 2011, 8: 1510-1520. PMID: 21508012, PMCID: PMC3163428, DOI: 10.1098/rsif.2011.0160.Peer-Reviewed Original ResearchConceptsTB diseaseLatent M. tuberculosis infectionEffects of IptHIV-endemic settingsActive tuberculosis diseaseIsoniazid preventive therapyIntact immune systemM. tuberculosis infectionWorld Health OrganizationPreventive therapyTB casesTuberculosis infectionTuberculosis diseaseClinical trialsEndemic settingsIPT programHigh riskLatent infectionSingle drugCommunity-wide levelRespiratory contactHIVImmune systemPopulation-level impactUse of IPTModels to understand the population-level impact of mixed strain M. tuberculosis infections
Sergeev R, Colijn C, Cohen T. Models to understand the population-level impact of mixed strain M. tuberculosis infections. Journal Of Theoretical Biology 2011, 280: 88-100. PMID: 21514304, PMCID: PMC3111980, DOI: 10.1016/j.jtbi.2011.04.011.Peer-Reviewed Original ResearchConceptsDrug-resistant strainsMixed strain infectionsStrain infectionDrug-sensitive tuberculosisDrug-resistant tuberculosisM. tuberculosis infectionLower basic reproductive numberDrug-resistant infectionsTuberculosis patientsTuberculosis infectionTreatment successDrug-resistant bacteriaFuture burdenLong-term effectsStrain-specific differencesDrug resistanceInfectionPopulation-level impactTuberculosisM. tuberculosisMixed infectionsMycobacterium tuberculosisBasic reproductive numberCo-infected hostsSmall subpopulation