2024
SUMOylation Fine-Tunes Endothelial HEY1 in the Regulation of Angiogenesis
Ren R, Ding S, Ma K, Jiang Y, Wang Y, Chen J, Wang Y, Kou Y, Fan X, Zhu X, Qin L, Qiu C, Simons M, Wei X, Yu L. SUMOylation Fine-Tunes Endothelial HEY1 in the Regulation of Angiogenesis. Circulation Research 2024, 134: 203-222. PMID: 38166414, PMCID: PMC10872267, DOI: 10.1161/circresaha.123.323398.Peer-Reviewed Original ResearchDNA-binding capabilityElectrophoretic mobility shift assaysEndothelial cell-specific expressionMobility shift assaysHairy/EnhancerCell-specific expressionPrimary human endothelial cellsNotch pathway componentsE-box promoter elementsEndothelial cellsRegulation of angiogenesisHelix familyPostnatal vascular growthHey1 functionsTranscriptional complexChromatin immunoprecipitationE3 ligaseRTK signalingEmbryonic developmentMatrigel plug assayPromoter elementsBioinformatics analysisShift assaysSUMOylationDNA binding
2023
Endothelial VEGFR2-PLCγ signaling regulates vascular permeability and anti-tumor immunity through eNOS/Src
Sjöberg E, Melssen M, Richards M, Ding Y, Chanoca C, Chen D, Nwadozi E, Pal S, Love D, Ninchoji T, Shibuya M, Simons M, Dimberg A, Claesson-Welsh L. Endothelial VEGFR2-PLCγ signaling regulates vascular permeability and anti-tumor immunity through eNOS/Src. Journal Of Clinical Investigation 2023, 133: e161366. PMID: 37651195, PMCID: PMC10575733, DOI: 10.1172/jci161366.Peer-Reviewed Original ResearchConceptsEndothelial nitric oxide synthaseRenal cell carcinomaAnti-tumor immunityVascular leakageT cellsEndothelial barrierClear cell renal cell carcinomaCell renal cell carcinomaRegulatory T cellsHelper T cellsNitric oxide synthaseImmune cell activationAntitumor immunityImmunosuppressive cytokinesPoor prognosisCell carcinomaPLCγ pathwayOxide synthaseVascular permeabilityB cellsActivation of PLCγCell activationTumor vesselsDecreased expressionCancer formsEndothelial FIS1 DeSUMOylation Protects Against Hypoxic Pulmonary Hypertension
Zhou X, Jiang Y, Wang Y, Fan L, Zhu Y, Chen Y, Wang Y, Zhu Y, Wang H, Pan Z, Li Z, Zhu X, Ren R, Ge Z, Lai D, Lai E, Chen T, Wang K, Liang P, Qin L, Liu C, Qiu C, Simons M, Yu L. Endothelial FIS1 DeSUMOylation Protects Against Hypoxic Pulmonary Hypertension. Circulation Research 2023, 133: 508-531. PMID: 37589160, DOI: 10.1161/circresaha.122.321200.Peer-Reviewed Original ResearchConceptsPulmonary hypertensionHypoxic pulmonary hypertensionPulmonary endothelial functionHuman pulmonary artery endothelial cellsPulmonary artery endothelial cellsPulmonary endotheliumArtery endothelial cellsEndothelial functionEndothelial cellsEndothelial mitochondriaSugen/hypoxia rat modelClinical specimensPulmonary endothelial dysfunctionHypoxia rat modelPulmonary arterial systemHypoxic stressVascular remodeling diseasePrevious clinical researchHuman embryonic stem cell-derived endothelial cellsMitochondrial oxygen consumption rateIntrinsic pathogenesisEndothelial dysfunctionExtracellular acidification rateHypoxic ratsPoor prognosisChylomicrons Regulate Lacteal Permeability and Intestinal Lipid Absorption
Zarkada G, Chen X, Zhou X, Lange M, Zeng L, Lv W, Zhang X, Li Y, Zhou W, Liu K, Chen D, Ricard N, Liao J, Kim Y, Benedito R, Claesson-Welsh L, Alitalo K, Simons M, Ju R, Li X, Eichmann A, Zhang F. Chylomicrons Regulate Lacteal Permeability and Intestinal Lipid Absorption. Circulation Research 2023, 133: 333-349. PMID: 37462027, PMCID: PMC10530007, DOI: 10.1161/circresaha.123.322607.Peer-Reviewed Original ResearchConceptsLymphatic endothelial cellsCell-cell junctionsCytoskeleton contractionMolecular biology approachesSmall GTPase Rac1Cytoskeletal contractilityBiology approachGTPase Rac1Stress fibersA SignalingPI3KLipid uptakePermeability regulationLymphatic permeabilityIntestinal lipid absorptionLEC junctionJunction openingEndothelial cellsLymphatic capillariesVEGFR-2Fundamental mechanismsLymphatic barrierLymphatic vesselsVascular endothelial growthLymphatic junctionsAcetate controls endothelial-to-mesenchymal transition
Zhu X, Wang Y, Soaita I, Lee H, Bae H, Boutagy N, Bostwick A, Zhang R, Bowman C, Xu Y, Trefely S, Chen Y, Qin L, Sessa W, Tellides G, Jang C, Snyder N, Yu L, Arany Z, Simons M. Acetate controls endothelial-to-mesenchymal transition. Cell Metabolism 2023, 35: 1163-1178.e10. PMID: 37327791, PMCID: PMC10529701, DOI: 10.1016/j.cmet.2023.05.010.Peer-Reviewed Original ResearchConceptsTGF-β signalingChronic vascular diseaseTGF-β receptor ALK5Mesenchymal transitionInduction of EndMTVascular diseaseMolecular basisPositive feedback loopReceptor ALK5Cellular levelSMADs 2Novel targetEndMT inductionMetabolic modulationMetabolic basisFibrotic stateSignalingPotential treatmentEndMTTGFDiseaseActivationInductionACSS2PDK4TGFβ signaling pathways in human health and disease
Chen P, Qin L, Simons M. TGFβ signaling pathways in human health and disease. Frontiers In Molecular Biosciences 2023, 10: 1113061. PMID: 37325472, PMCID: PMC10267471, DOI: 10.3389/fmolb.2023.1113061.Peer-Reviewed Original ResearchEndothelial-to-mesenchymal transition: advances and controversies
Simons M. Endothelial-to-mesenchymal transition: advances and controversies. Current Opinion In Physiology 2023, 34: 100678. PMID: 37305156, PMCID: PMC10249652, DOI: 10.1016/j.cophys.2023.100678.Peer-Reviewed Original ResearchHigh-resolution visualization of pial surface vessels by flattened whole mount staining
Xu Y, Zhang J, Lee H, Zhang G, Bai Y, Simons M. High-resolution visualization of pial surface vessels by flattened whole mount staining. IScience 2023, 26: 106467. PMID: 37020957, PMCID: PMC10067958, DOI: 10.1016/j.isci.2023.106467.Peer-Reviewed Original ResearchBlood vesselsCerebral vasculatureWhole cerebral cortexCerebral blood vesselsParticular blood vesselCentral nervous system researchCLARITY technologyCerebral cortexStroke settingsCerebral vesselsWhole-mount techniqueDisease settingsEndothelial proliferationNervous system researchPostnatal developmentTherapeutic developmentWhole-mount stainingVasculatureVesselsMount stainingMount techniqueConfocal imagingNormal developmentHigh-resolution visualizationImaging
2022
YES to junctions, no to Src
Simons M, Toomre D. YES to junctions, no to Src. Nature Cardiovascular Research 2022, 1: 1116-1118. PMID: 36938496, PMCID: PMC10021110, DOI: 10.1038/s44161-022-00185-8.Peer-Reviewed Original ResearchMultiple Intravenous Bolus Dosing and Invasive Hemodynamic Assessment in a Hypoxia-Induced Mouse Pulmonary Artery Hypertension Model.
Qin L, Jiang B, Zsebo K, Duckers H, Simons M, Chen P. Multiple Intravenous Bolus Dosing and Invasive Hemodynamic Assessment in a Hypoxia-Induced Mouse Pulmonary Artery Hypertension Model. Journal Of Visualized Experiments 2022 PMID: 36440832, DOI: 10.3791/63839.Peer-Reviewed Original ResearchConceptsPulmonary arterial hypertensionInvasive hemodynamic assessmentHemodynamic assessmentPAH modelProgressive life-threatening diseaseGroup 3 diseaseRight ventricle catheterizationSmall pulmonary arteriolesIntravenous bolus dosingNew experimental therapiesLife-threatening diseaseAdministration of compoundsMouse jugular veinHuman clinical manifestationsArterial hypertensionHypertension modelPulmonary arteriolesClinical manifestationsBolus dosingExperimental therapiesIntravenous administrationJugular veinPAH researchMultiple injectionsTime courseAuthor Correction: Syndecan-2 selectively regulates VEGF-induced vascular permeability
Corti F, Ristori E, Rivera-Molina F, Toomre D, Zhang J, Mihailovic J, Zhuang Z, Simons M. Author Correction: Syndecan-2 selectively regulates VEGF-induced vascular permeability. Nature Cardiovascular Research 2022, 1: 592-592. PMID: 39195875, DOI: 10.1038/s44161-022-00092-y.Peer-Reviewed Original Research
2019
Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis
Chen PY, Qin L, Li G, Wang Z, Dahlman JE, Malagon-Lopez J, Gujja S, Cilfone N, Kauffman K, Sun L, Sun H, Zhang X, Aryal B, Canfran-Duque A, Liu R, Kusters P, Sehgal A, Jiao Y, Anderson D, Gulcher J, Fernandez-Hernando C, Lutgens E, Schwartz M, Pober J, Chittenden T, Tellides G, Simons M. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nature Metabolism 2019, 1: 912-926. PMID: 31572976, PMCID: PMC6767930, DOI: 10.1038/s42255-019-0102-3.Peer-Reviewed Original ResearchConceptsTGF-β signalingVascular inflammationDisease progressionPlaque growthProgressive vascular diseaseVessel wall inflammationChronic inflammatory responseSpecific therapeutic interventionsAtherosclerotic plaque growthHyperlipidemic micePlaque inflammationWall inflammationProinflammatory effectsVascular diseaseInflammatory responseVascular permeabilityAtherosclerotic plaquesAbnormal shear stressTherapeutic interventionsInflammationEndothelial TGFΒ signalingVessel wallAtherosclerosisLipid retention
2018
SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis
Zhou HJ, Xu Z, Wang Z, Zhang H, Zhuang Z, Simons M, Min W. SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis. Nature Communications 2018, 9: 3303. PMID: 30120232, PMCID: PMC6098000, DOI: 10.1038/s41467-018-05812-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCorneaCysteine EndopeptidasesDiabetes MellitusEndopeptidasesGene DeletionGene Knock-In TechniquesGene SilencingGolgi ApparatusHuman Umbilical Vein Endothelial CellsHumansIntracellular SpaceMaleMice, Inbred C57BLMice, KnockoutNeovascularization, PathologicProtein TransportRetinaSignal TransductionSUMO-1 ProteinSumoylationVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-2ConceptsPathological angiogenesisPotential therapeutic targetRegulation of VEGFR2Non-sumoylated formEndothelial-specific deletionDiabetic miceHindlimb ischemiaTherapeutic targetDiabetic settingControl of angiogenesisEndothelial cellsAngiogenesisVEGFR2Surface expressionVEGFR2 activityTissue repairSENP1
2016
Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development
Wang Y, Baeyens N, Corti F, Tanaka K, Fang J, Zhang J, Jin Y, Coon B, Hirschi K, Schwartz M, Simons M. Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development. Journal Of Cell Science 2016, 129: e1.1-e1.1. DOI: 10.1242/jcs.200089.Peer-Reviewed Original ResearchAdrenomedullin 2 activates extracellular-signal-regulated kinase in endothelial cells via a protein kinase C α-independent pathway
Guo X, Ju R, Cha C, Simons M. Adrenomedullin 2 activates extracellular-signal-regulated kinase in endothelial cells via a protein kinase C α-independent pathway. F1000Research 2016, 5: 26. DOI: 10.12688/f1000research.2420.1.Peer-Reviewed Original Research
2014
Fibroblast growth factor receptor 1 is a key inhibitor of TGFβ signaling in the endothelium
Chen PY, Qin L, Tellides G, Simons M. Fibroblast growth factor receptor 1 is a key inhibitor of TGFβ signaling in the endothelium. Science Signaling 2014, 7: ra90. PMID: 25249657, DOI: 10.1126/scisignal.2005504.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell TransdifferentiationCoronary VesselsEndothelium, VascularExtracellular MatrixFibroblastsGraft RejectionHeart TransplantationHeterograftsHindlimbHuman Umbilical Vein Endothelial CellsHumansIschemiaMesodermMiceMice, Mutant StrainsMicroRNAsMuscle, Smooth, VascularNeointimaReceptor, Fibroblast Growth Factor, Type 1Receptors, Fibroblast Growth FactorSignal TransductionSmad2 ProteinTransforming Growth Factor betaTransplantation ChimeraConceptsFibroblast growth factor receptor 1Growth factor receptor 1Factor receptor 1Extracellular matrixSmooth muscle cellsMuscle cellsEndothelial cell-specific knockoutKey regulatorReceptor 1TGFβ signalingCell-specific knockoutDecreased abundanceMesenchymal transitionKey inhibitorVascular homeostasisGrowth factorDevelopment of EndMTRecurrence of stenosisTGFβGrowth of neointimaCellsNeointima formationEndMTVascular lumenSignalingScience Signaling Podcast: 23 September 2014
Simons M, VanHook A. Science Signaling Podcast: 23 September 2014. Science Signaling 2014, 7 DOI: 10.1126/scisignal.2005857.Peer-Reviewed Original ResearchTGF-β signalingMesenchymal transitionReceptor FGFR1Line blood vesselsFibroblast growth factor (FGF) pathwayEndothelial cellsTGF-β receptorCell biologyPolarized cellsGrowth factor pathwaysScience SignalingSignalingBlood vesselsFactor pathwayVascular homeostasisFGFNormal functionCellsFGFR1EndMTNormal conditionsMicroRNAsSenior authorBiologyHomeostasisPTP1b Is a Physiologic Regulator of Vascular Endothelial Growth Factor Signaling in Endothelial Cells
Lanahan AA, Lech D, Dubrac A, Zhang J, Zhuang ZW, Eichmann A, Simons M. PTP1b Is a Physiologic Regulator of Vascular Endothelial Growth Factor Signaling in Endothelial Cells. Circulation 2014, 130: 902-909. PMID: 24982127, PMCID: PMC6060619, DOI: 10.1161/circulationaha.114.009683.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaCell MovementCell ProliferationDisease Models, AnimalEndothelial CellsFemaleHindlimbHuman Umbilical Vein Endothelial CellsIschemiaMaleMiceMice, Mutant StrainsNeovascularization, PhysiologicPrimary Cell CultureProtein Tyrosine Phosphatase, Non-Receptor Type 1RNA, Small InterferingSignal TransductionVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-2ConceptsPhosphotyrosine phosphatase 1BVascular endothelial growth factor receptor 2 signalingExtracellular signal-regulated kinaseGrowth factor signalingVEGF-dependent activationSignal-regulated kinaseNull miceVascular endothelial growth factor signalingRegulation of angiogenesisEndothelial traffickingEndothelial-specific deletionFactor signalingEndothelial VEGFR2Phosphatase 1BEndothelial cellsKey regulatorReceptor 2 signalingVEGFR2 signalingSignalingImportant roleEndothelial knockoutPhysiologic regulatorHindlimb ischemia mouse modelRegulationImpaired blood flow recoveryThe docking protein FRS2α is a critical regulator of VEGF receptors signaling
Chen PY, Qin L, Zhuang ZW, Tellides G, Lax I, Schlessinger J, Simons M. The docking protein FRS2α is a critical regulator of VEGF receptors signaling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 5514-5519. PMID: 24706887, PMCID: PMC3992672, DOI: 10.1073/pnas.1404545111.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCell MovementDNA PrimersEndothelial CellsGene Expression ProfilingGenetic VectorsHEK293 CellsHuman Umbilical Vein Endothelial CellsHumansImmunoblottingImmunohistochemistryImmunoprecipitationLaser-Doppler FlowmetryLentivirusMembrane ProteinsMiceReal-Time Polymerase Chain ReactionReceptors, Vascular Endothelial Growth FactorSignal TransductionX-Ray MicrotomographyConceptsLymphatic endothelial cell migrationFibroblast growth factor receptor substrate 2Growth factor receptor substrate 2Cognate receptor tyrosine kinasesFactor receptor substrate 2Receptor kinase signalingVascular endothelial growth factorPostnatal vascular developmentReceptor tyrosine kinasesEndothelial cell migrationKinase signalingEndothelial-specific deletionAdult angiogenesisVEGF receptorsTyrosine kinaseCritical regulatorVascular developmentFRS2αSubstrate 2Cell migrationDependent activationCritical roleUnidentified componentsGrowth factorEndothelial growth factor
2013
Endothelial Cell–Dependent Regulation of Arteriogenesis
Moraes F, Paye J, Mac Gabhann F, Zhuang ZW, Zhang J, Lanahan AA, Simons M. Endothelial Cell–Dependent Regulation of Arteriogenesis. Circulation Research 2013, 113: 1076-1086. PMID: 23897694, PMCID: PMC3865810, DOI: 10.1161/circresaha.113.301340.Peer-Reviewed Original ResearchConceptsAdult arteriogenesisCell-autonomous fashionGrowth factor signalingMouse linesCell-autonomous effectsKnockin mouse lineMorphogenetic defectsArterial morphogenesisCell type-specific deletionFactor signalingCell typesCre-driver mouse linesSynectinAttractive therapeutic strategyOcclusive atherosclerotic diseaseMuscle cellsEndothelial cellsRegulationArterial conduitsAtherosclerotic diseaseTherapeutic strategiesAdult miceClinical importanceArteriogenesisCells