Svetlana Rogulina
Research Assistant 2DownloadHi-Res Photo
Cards
Contact Info
About
Titles
Research Assistant 2
Departments & Organizations
Research
Research at a Glance
Yale Co-Authors
Frequent collaborators of Svetlana Rogulina's published research.
Publications Timeline
A big-picture view of Svetlana Rogulina's research output by year.
Jesse Rinehart, PhD
Hongying Shen, PhD
Laura Abriola
11Publications
459Citations
Publications
2023
System‐wide optimization of an orthogonal translation system with enhanced biological tolerance
Mohler K, Moen J, Rogulina S, Rinehart J. System‐wide optimization of an orthogonal translation system with enhanced biological tolerance. Molecular Systems Biology 2023, 19: msb202110591. PMID: 37477096, PMCID: PMC10407733, DOI: 10.15252/msb.202110591.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsOrthogonal translation systemHost interactionsNon-standard amino acidsPost-translational modificationsSystems-level biologyStress response activationTranslation systemSynthetic biological systemsCellular physiologyProtein phosphorylationOTS performanceHost physiologyCellular environmentAmino acidsCellular mechanismsDeleterious interactionsResponse activationBiological systemsPhysiologyOTS developmentUnparalleled accessPhosphorylationHost toxicityBiologyInteraction
2022
Enhanced access to the human phosphoproteome with genetically encoded phosphothreonine
Moen J, Mohler K, Rogulina S, Shi X, Shen H, Rinehart J. Enhanced access to the human phosphoproteome with genetically encoded phosphothreonine. Nature Communications 2022, 13: 7226. PMID: 36433969, PMCID: PMC9700786, DOI: 10.1038/s41467-022-34980-5.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsUbiquitous post-translational modificationCo-translational insertionKinase activation mechanismProtein interaction platformOrthogonal translation systemProtein-protein interactionsPost-translational modificationsPhospho-amino acidsAminoacyl-tRNA synthetaseHuman phosphoproteomePhosphorylation eventsTRNA pairsFunctional assignmentCellular processesProtein phosphorylationUpstream kinasePhysiological functionsActivation mechanismTranslation systemKinasePhosphorylationInteraction platformPhosphoproteomePhosphothreoninePhospho
2021
Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function
Schiapparelli P, Pirman NL, Mohler K, Miranda-Herrera PA, Zarco N, Kilic O, Miller C, Shah SR, Rogulina S, Hungerford W, Abriola L, Hoyer D, Turk BE, Guerrero-Cázares H, Isaacs FJ, Quiñones-Hinojosa A, Levchenko A, Rinehart J. Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function. Cell Reports 2021, 36: 109416. PMID: 34289367, PMCID: PMC8379681, DOI: 10.1016/j.celrep.2021.109416.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAmino Acid SequenceAnimalsCell Line, TumorCell MovementCell ProliferationEscherichia coliFemaleGlioblastomaHEK293 CellsHumansMaleMice, NudeMiddle AgedPhosphorylationPhosphoserineProtein Serine-Threonine KinasesRecombinant ProteinsSignal TransductionSmall Molecule LibrariesSubstrate SpecificityWNK Lysine-Deficient Protein Kinase 1ConceptsKinase networkAuthentic post-translational modificationsGenetic code expansionPost-translational modificationsProduction of proteinsSmall molecule kinase inhibitorsKinase inhibitorsGenetic codePhosphorylated proteinsCode expansionKinase proteinWNK kinasesPhysiological functionsWNK4 kinaseBiochemical propertiesGlioblastoma cellsKinaseBacterial strainsProteinDistinct sitesPhosphoserineSPAKBacteriaCellular systemsCells
2018
Encoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions
Barber KW, Muir P, Szeligowski RV, Rogulina S, Gerstein M, Sampson JR, Isaacs FJ, Rinehart J. Encoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions. Nature Biotechnology 2018, 36: 638-644. PMID: 29889213, PMCID: PMC6590076, DOI: 10.1038/nbt.4150.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and Concepts
2015
A flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation
Pirman NL, Barber KW, Aerni HR, Ma NJ, Haimovich AD, Rogulina S, Isaacs FJ, Rinehart J. A flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation. Nature Communications 2015, 6: 8130. PMID: 26350500, PMCID: PMC4566969, DOI: 10.1038/ncomms9130.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsProtein phosphorylationProtein phosphorylation eventsFull-length proteinNon-phosphorylated formPhosphoserine-containing proteinsPhosphorylation eventsMEK1 kinaseUAG codonKinase activityRecombinant DNADNA templateEscherichia coliE. coliCodonPhosphorylationFunctional informationSerineProteinColiBiochemical investigationsPhosphoproteomeInefficient productionKinasePhosphoserineDNARobust production of recombinant phosphoproteins using cell-free protein synthesis
Oza JP, Aerni HR, Pirman NL, Barber KW, ter Haar CM, Rogulina S, Amrofell MB, Isaacs FJ, Rinehart J, Jewett MC. Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nature Communications 2015, 6: 8168. PMID: 26350765, PMCID: PMC4566161, DOI: 10.1038/ncomms9168.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMEK1 activityMultiple phosphorylated residuesCo-translational incorporationSite-specific protein phosphorylationCell-free protein synthesis platformHigh-throughput technology platformsCell-free protein synthesisSite-specific phosphorylationStructure-function relationshipsRecombinant phosphoproteinsPhosphorylation eventsMEK1 kinasePhosphorylated residuesProtein phosphorylationProtein synthesisEscherichia coliPhosphoproteinRobust productionSynthesis platformStructural consequencesDirect expressionPhosphorylationTechnology platformKinasePhosphoserine
2014
Revealing the amino acid composition of proteins within an expanded genetic code
Aerni HR, Shifman MA, Rogulina S, O'Donoghue P, Rinehart J. Revealing the amino acid composition of proteins within an expanded genetic code. Nucleic Acids Research 2014, 43: e8-e8. PMID: 25378305, PMCID: PMC4333366, DOI: 10.1093/nar/gku1087.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsNon-standard amino acidsOrthogonal translation systemGenetic codeUAG codonProtein synthesisConventional proteomic analysisRecombinant reporter proteinRelease factor 1Amino acid insertionAmino acid compositionReporter proteinProteomic analysisExtended proteinSurprising diversityUAG readthroughAcid insertionProteomic workflowStop codonNative proteinCodonEscherichia coliAmino acidsMessenger RNAUAGProteinExpanded Cellular Amino Acid Pools Containing Phosphoserine, Phosphothreonine, and Phosphotyrosine
Steinfeld JB, Aerni HR, Rogulina S, Liu Y, Rinehart J. Expanded Cellular Amino Acid Pools Containing Phosphoserine, Phosphothreonine, and Phosphotyrosine. ACS Chemical Biology 2014, 9: 1104-1112. PMID: 24646179, PMCID: PMC4027946, DOI: 10.1021/cb5000532.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsNonstandard amino acidsAmino acidsGenetic codeOrthogonal aminoacyl-tRNA synthetaseCellular amino acid poolsIntracellular levelsPhosphorylated amino acidsAminoacyl-tRNA synthetaseE. coliLow-phosphate mediumAmino acid poolCotranslational insertionTRNA pairsMetabolic engineeringRecombinant proteinsDeficient cellsStandard amino acidsProtein synthesisWT cellsPhosphoserinePhosphotyrosinePhosphothreonineProteinAcid poolColi
2012
Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion
Heinemann IU, Rovner AJ, Aerni HR, Rogulina S, Cheng L, Olds W, Fischer JT, Söll D, Isaacs FJ, Rinehart J. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion. FEBS Letters 2012, 586: 3716-3722. PMID: 22982858, PMCID: PMC3473164, DOI: 10.1016/j.febslet.2012.08.031.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsUAG codonEscherichia coli protein synthesisRelease factor 1Aminoacyl-tRNA synthetaseCellular fitnessCodon reassignmentEssential genesElongation factorPhosphoserine phosphataseProtein synthesisRF-1Protein yieldTranslation systemFactor 1CodonAccompanying lossGFPUAAGenesSynthetaseDeletionWNK4FitnessPhosphataseExpression
2008
Acute Myeloid Leukemia in Mice Associated with Retrovirally-Mediated Overexpression of HOXB4
Zhang H, Chen W, Rogulina S, Lee H, Forget B. Acute Myeloid Leukemia in Mice Associated with Retrovirally-Mediated Overexpression of HOXB4. Blood 2008, 112: 4484. DOI: 10.1182/blood.v112.11.4484.4484.Peer-Reviewed Original ResearchConceptsRetroviral integration sitesOverexpression of HOXB4Hematopoietic stem cellsIntegration sitesBone marrow cellsIntron 1Ability of HSCsIntrons of genesMurine bone marrow cellsEffect of knockdownNorthern blot analysisStem cell markers c-KitControl bone marrow cellsN-ras genePRDM16 geneLMO2 geneKb upstreamMRNA accumulationHOXB4Leukemic bone marrow cellsGFP retrovirusCombinatorial fashionGenesLeukemic cellsIntron 2