Application of novel PACS-based informatics platform to identify imaging based predictors of CDKN2A allelic status in glioblastomas
Tillmanns N, Lost J, Tabor J, Vasandani S, Vetsa S, Marianayagam N, Yalcin K, Erson-Omay E, von Reppert M, Jekel L, Merkaj S, Ramakrishnan D, Avesta A, de Oliveira Santo I, Jin L, Huttner A, Bousabarah K, Ikuta I, Lin M, Aneja S, Turowski B, Aboian M, Moliterno J. Application of novel PACS-based informatics platform to identify imaging based predictors of CDKN2A allelic status in glioblastomas. Scientific Reports 2023, 13: 22942. PMID: 38135704, PMCID: PMC10746716, DOI: 10.1038/s41598-023-48918-4.Peer-Reviewed Original ResearchConceptsInformatics platformDeep learning algorithmsImaging featuresCDKN2A alterationsLearning algorithmHeterozygous lossHomozygous deletionLarge datasetsDeep white matter invasionGBM molecular subtypesNew informaticsQualitative imaging biomarkersWhole-exome sequencingQualitative imaging featuresGBM resectionRadiographic evidenceWorse prognosisPACSMolecular subtypesPial invasionImaging biomarkersCDKN2A mutationsAllele statusNoninvasive identificationMagnetic resonance imagesPredicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning
Kucukkaya A, Zeevi T, Chai N, Raju R, Haider S, Elbanan M, Petukhova-Greenstein A, Lin M, Onofrey J, Nowak M, Cooper K, Thomas E, Santana J, Gebauer B, Mulligan D, Staib L, Batra R, Chapiro J. Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning. Scientific Reports 2023, 13: 7579. PMID: 37165035, PMCID: PMC10172370, DOI: 10.1038/s41598-023-34439-7.Peer-Reviewed Original Research