2020
Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning
Bousabarah K, Letzen B, Tefera J, Savic L, Schobert I, Schlachter T, Staib LH, Kocher M, Chapiro J, Lin M. Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning. Abdominal Radiology 2020, 46: 216-225. PMID: 32500237, PMCID: PMC7714704, DOI: 10.1007/s00261-020-02604-5.Peer-Reviewed Original ResearchConceptsDeep convolutional neural networkAverage false positive rateDice similarity coefficientU-NetDeep learning algorithmsConvolutional neural networkTest setMean Dice similarity coefficientRandom forest classifierDCNN methodDCNN approachDeep learningNet architectureLearning algorithmNeural networkLiver segmentationManual 3D segmentationForest classifierGround truthManual segmentationFalse positive rateCorresponding segmentationSegmentationMultiphasic contrast-enhanced MRIThresholding
2019
Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation
Yang J, Dvornek NC, Zhang F, Chapiro J, Lin M, Duncan JS. Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation. Lecture Notes In Computer Science 2019, 11765: 255-263. PMID: 32377643, PMCID: PMC7202929, DOI: 10.1007/978-3-030-32245-8_29.Peer-Reviewed Original ResearchDice similarity coefficientDomain adaptationContent spaceDomain shiftTarget domainCross-modality domain adaptationUnsupervised domain adaptation methodsDiverse image generationLiver segmentation taskDeep learning modelsDifferent target domainUnlabeled target dataFeature-level informationUnsupervised domain adaptationDomain adaptation methodsMulti-phasic MRISegmentation taskSegmentation performanceSegmentation modelImage generationLiver segmentationStyle transferDisentangled representationsBetter generalizationSource domain