2021
BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis
Li X, Zhou Y, Dvornek N, Zhang M, Gao S, Zhuang J, Scheinost D, Staib LH, Ventola P, Duncan JS. BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis. Medical Image Analysis 2021, 74: 102233. PMID: 34655865, PMCID: PMC9916535, DOI: 10.1016/j.media.2021.102233.Peer-Reviewed Original ResearchConceptsFunctional magnetic resonance imagesGraph neural network frameworkMedical image analysisGraph neural networkGraph convolutional layersNeural network frameworkDifferent evaluation metricsSpecific task statesIndependent fMRI datasetsPooling layerConvolutional layersConsistency lossNetwork frameworkNeural networkFMRI datasetsImage analysis methodEvaluation metricsDetection resultsBrain graphsSubjects releaseROI selectionImage analysisCognitive stimuliTask statesFMRI analysis
2018
2-Channel Convolutional 3D Deep Neural Network (2CC3D) for FMRI Analysis: ASD Classification and Feature Learning
Li X, Dvornek NC, Papademetris X, Zhuang J, Staib LH, Ventola P, Duncan JS. 2-Channel Convolutional 3D Deep Neural Network (2CC3D) for FMRI Analysis: ASD Classification and Feature Learning. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2018, 2018: 1252-1255. PMID: 32983370, PMCID: PMC7519578, DOI: 10.1109/isbi.2018.8363798.Peer-Reviewed Original ResearchConvolutional neural networkNeural networkCNN convolutional layerSpatial featuresASD classificationDeep neural networksMean F-scoreTraditional machineFeature learningConvolutional layersInput formatF-scoreClassification modelTemporal informationNetworkWindow parametersImagesClassificationConvolutionalTemporal statisticsMachineLearningFeaturesFormatScheme