2000
Identification and Characterization of Human SLP-2, a Novel Homologue of Stomatin (Band 7.2b) Present in Erythrocytes and Other Tissues*
Wang Y, Morrow J. Identification and Characterization of Human SLP-2, a Novel Homologue of Stomatin (Band 7.2b) Present in Erythrocytes and Other Tissues*. Journal Of Biological Chemistry 2000, 275: 8062-8071. PMID: 10713127, DOI: 10.1074/jbc.275.11.8062.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAntibody SpecificityBlood ProteinsCloning, MolecularCytoskeletonDNA, ComplementaryErythrocyte MembraneHumansMembrane ProteinsMolecular Sequence DataMultigene FamilyNerve Tissue ProteinsProtein BindingProtein BiosynthesisProtein Structure, TertiarySequence Analysis, DNASequence Analysis, ProteinSequence Homology, Amino AcidTissue DistributionConceptsIntegral membrane proteinsMembrane proteinsStomatin homologueSLP-1SLP-2Human stomatinCholesterol-rich lipid raftsLipid domain organizationTerminal hydrophobic domainAmino acid sequenceCultured COS cellsMature human erythrocytesSDS-polyacrylamide gel electrophoresis analysisErythrocyte membrane proteinsDomain organizationNonerythroid tissuesLipid raftsStomatin genePeripheral cytoskeletonChromosome 9p13StomatinAcid sequenceGel electrophoresis analysisCOS cellsRelated proteins
1999
Exclusion of the stomatin, α‐adducin and β‐adducin loci in a large kindred with dehydrated hereditary stomatocytosis
Innes D, Sinard J, Gilligan D, Snyder L, Gallagher P, Morrow J. Exclusion of the stomatin, α‐adducin and β‐adducin loci in a large kindred with dehydrated hereditary stomatocytosis. American Journal Of Hematology 1999, 60: 72-74. PMID: 9883810, DOI: 10.1002/(sici)1096-8652(199901)60:1<72::aid-ajh13>3.0.co;2-8.Peer-Reviewed Original Research
1998
Utilization of an 86bp exon generates a novel adducin isoform (β4) lacking the MARCKS homology domain1The first two authors contributed equally to this work.1
Sinard J, Stewart G, Stabach P, Argent A, Gilligan D, Morrow J. Utilization of an 86bp exon generates a novel adducin isoform (β4) lacking the MARCKS homology domain1The first two authors contributed equally to this work.1. Biochimica Et Biophysica Acta 1998, 1396: 57-66. PMID: 9524222, DOI: 10.1016/s0167-4781(97)00167-x.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAmino Acid SequenceBase SequenceCalmodulin-Binding ProteinsCloning, MolecularExonsHumansIntracellular Signaling Peptides and ProteinsIsomerismMembrane ProteinsMolecular Sequence DataMyristoylated Alanine-Rich C Kinase SubstrateOrgan SpecificityPolymerase Chain ReactionProtein Structure, TertiaryProteinsSequence Homology, Amino AcidSequence Homology, Nucleic AcidTranscription, GeneticConceptsNovel amino acidAmino acidsBeta-adducinNew isoformHuman bone marrow cDNA libraryBone marrow cDNA libraryDifferent reading framesCalcium/calmodulinLysine-rich sequenceNT-2 cellsProtein kinase CGenomic clonesGenomic mapNew amino acidsAlternate exonsActin crossCDNA libraryReading frameSplice consensus sequenceNew exonsNovel isoformConsensus sequenceStop codonKinase CExons
1991
Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin.
Kennedy S, Warren S, Forget B, Morrow J. Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin. Journal Of Cell Biology 1991, 115: 267-277. PMID: 1833409, PMCID: PMC2289929, DOI: 10.1083/jcb.115.1.267.Peer-Reviewed Original ResearchConceptsAmino-terminal halfRepeat unitsCarboxy-terminal halfCOOH-terminal thirdProkaryotic expression systemNonerythroid cellsIntegral proteinsErythrocyte membrane vesiclesBeta spectrinResidue segmentExpression systemAnkyrinNuclease digestionNonhomologous segmentsMembrane vesiclesTerminal thirdAttachment of spectrinNative spectrinSpectrinAmino acidsPosition 45RepeatsSedimentation velocity experimentsRepetitive unitsCDNA
1990
Radiolabel‐transfer cross‐linking demonstrates that protein 4.1 binds to the N‐terminal region of β spectrin and to actin in binary interactions
BECKER P, SCHWARTZ M, MORROW J, Samuel E. Radiolabel‐transfer cross‐linking demonstrates that protein 4.1 binds to the N‐terminal region of β spectrin and to actin in binary interactions. The FEBS Journal 1990, 193: 827-836. PMID: 2249696, DOI: 10.1111/j.1432-1033.1990.tb19406.x.Peer-Reviewed Original Research
1989
Ankyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells.
Morrow J, Cianci C, Ardito T, Mann A, Kashgarian M. Ankyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. Journal Of Cell Biology 1989, 108: 455-465. PMID: 2537316, PMCID: PMC2115445, DOI: 10.1083/jcb.108.2.455.Peer-Reviewed Original ResearchConceptsMadin-Darby canine kidney cellsCanine kidney cellsK-ATPaseAlpha subunitMolecular mechanismsMDCK cellsMinor membrane proteinsDistribution of fodrinErythrocyte ankyrinConfluent MDCK cellsBinding of ankyrinKidney cellsHuman erythrocyte ankyrinRenal epithelial cellsCytoplasmic domainNonerythroid cellsMembrane proteinsCortical cytoskeletonBasolateral domainMembrane skeletonPolarized distributionAnkyrinBasolateral marginsCell developmentErythrocyte band 3Contributions of the β‐subunit to spectrin structure and function
Coleman T, Fishkind D, Mooseker M, Morrow J. Contributions of the β‐subunit to spectrin structure and function. Cytoskeleton 1989, 12: 248-263. PMID: 2524283, DOI: 10.1002/cm.970120406.Peer-Reviewed Original Research
1988
Phosphorylation of ankyrin down‐regulates its cooperative interaction with spectrin and protein 3
Cianci C, Giorgi M, Morrow J. Phosphorylation of ankyrin down‐regulates its cooperative interaction with spectrin and protein 3. Journal Of Cellular Biochemistry 1988, 37: 301-315. PMID: 2970468, DOI: 10.1002/jcb.240370305.Peer-Reviewed Original ResearchConceptsCytoplasmic domainAffinity of ankyrinProtein 3Integral membrane proteinsSpectrin tetramersCooperative interactionsSpectrin oligomersMembrane kinaseSpectrin dimersLong-range cooperative interactionsNonerythroid cellsProtein phosphorylationMembrane proteinsPeripheral cytoskeletonBeta spectrinAnkyrinPhosphorylationOligomer formationChymotryptic digestionSpectrinPrimary attachmentGeneral importanceCooperative fashionEnhanced affinitySuch interactionsNa,K-ATPase co-distributes with ankyrin and spectrin in renal tubular epithelial cells.
Kashgarian M, Morrow J, Foellmer H, Mann A, Cianci C, Ardito T. Na,K-ATPase co-distributes with ankyrin and spectrin in renal tubular epithelial cells. Progress In Clinical And Biological Research 1988, 268B: 245-50. PMID: 2851802.Peer-Reviewed Original Research
1987
Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding.
Mische S, Mooseker M, Morrow J. Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding. Journal Of Cell Biology 1987, 105: 2837-2845. PMID: 3693401, PMCID: PMC2114693, DOI: 10.1083/jcb.105.6.2837.Peer-Reviewed Original ResearchAbnormal oxidant sensitivity and beta-chain structure of spectrin in hereditary spherocytosis associated with defective spectrin-protein 4.1 binding.
Becker P, Morrow J, Lux S. Abnormal oxidant sensitivity and beta-chain structure of spectrin in hereditary spherocytosis associated with defective spectrin-protein 4.1 binding. Journal Of Clinical Investigation 1987, 80: 557-565. PMID: 3611357, PMCID: PMC442269, DOI: 10.1172/jci113104.Peer-Reviewed Original ResearchThe interaction of calmodulin with human erythrocyte spectrin. Inhibition of protein 4.1-stimulated actin binding.
Anderson J, Morrow J. The interaction of calmodulin with human erythrocyte spectrin. Inhibition of protein 4.1-stimulated actin binding. Journal Of Biological Chemistry 1987, 262: 6365-6372. PMID: 3571263, DOI: 10.1016/s0021-9258(18)45579-2.Peer-Reviewed Original ResearchBeta spectrin bestows protein 4.1 sensitivity on spectrin-actin interactions.
Coleman T, Harris A, Mische S, Mooseker M, Morrow J. Beta spectrin bestows protein 4.1 sensitivity on spectrin-actin interactions. Journal Of Cell Biology 1987, 104: 519-526. PMID: 3818791, PMCID: PMC2114562, DOI: 10.1083/jcb.104.3.519.Peer-Reviewed Original Research
1986
Limited proteolysis of the erythrocyte membrane skeleton by calcium-dependent proteinases
Croall D, Morrow J, DeMartino G. Limited proteolysis of the erythrocyte membrane skeleton by calcium-dependent proteinases. Biochimica Et Biophysica Acta 1986, 882: 287-296. PMID: 3015225, DOI: 10.1016/0304-4165(86)90250-3.Peer-Reviewed Original ResearchMechanisms of cytoskeletal regulation: Functional and antigenic diversity in human erythrocyte and brain beta spectrin
Harris A, Anderson J, Yurchenco P, Green L, Ainger K, Morrow J. Mechanisms of cytoskeletal regulation: Functional and antigenic diversity in human erythrocyte and brain beta spectrin. Journal Of Cellular Biochemistry 1986, 30: 51-69. PMID: 2420811, DOI: 10.1002/jcb.240300107.Peer-Reviewed Original Research
1985
Mechanisms of cytoskeletal regulation: modulation of membrane affinity in avian brush border and erythrocyte spectrins.
Howe C, Sacramone L, Mooseker M, Morrow J. Mechanisms of cytoskeletal regulation: modulation of membrane affinity in avian brush border and erythrocyte spectrins. Journal Of Cell Biology 1985, 101: 1379-1385. PMID: 2931438, PMCID: PMC2113910, DOI: 10.1083/jcb.101.4.1379.Peer-Reviewed Original Research
1983
Molecular and functional changes in spectrin from patients with hereditary pyropoikilocytosis.
Knowles W, Morrow J, Speicher D, Zarkowsky H, Mohandas N, Mentzer W, Shohet S, Marchesi V. Molecular and functional changes in spectrin from patients with hereditary pyropoikilocytosis. Journal Of Clinical Investigation 1983, 71: 1867-1877. PMID: 6863544, PMCID: PMC370392, DOI: 10.1172/jci110942.Peer-Reviewed Original Research
1982
A structural model of human erythrocyte spectrin. Alignment of chemical and functional domains.
Speicher D, Morrow J, Knowles W, Marchesi V. A structural model of human erythrocyte spectrin. Alignment of chemical and functional domains. Journal Of Biological Chemistry 1982, 257: 9093-9101. PMID: 7096353, DOI: 10.1016/s0021-9258(18)34247-9.Peer-Reviewed Original ResearchConceptsNumerous small peptidesPeptide mapping techniquesChemical domainsPeptide segmentsMolecular weightChemical cleavageSized peptidesTwo-dimensional peptide mapping techniquesSmall peptidesIntact moleculeUnique peptidesPhosphorylated amino acidsFurther proteolytic cleavageOverlap peptidesPolypeptide segmentsIntermediate-sized peptidesMoleculesMild trypsin digestionTrypsin digestionTwo-dimensional peptide mapsPeptidesStructural modelSpectrin subunitsCleavagePeptide mapsMonoclonal antibodies as probes of domain structure of the spectrin alpha subunit.
Yurchenco P, Speicher D, Morrow J, Knowles W, Marchesi V. Monoclonal antibodies as probes of domain structure of the spectrin alpha subunit. Journal Of Biological Chemistry 1982, 257: 9102-9107. PMID: 7096354, DOI: 10.1016/s0021-9258(18)34248-0.Peer-Reviewed Original Research
1981
Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton.
Morrow J, Marchesi V. Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton. Journal Of Cell Biology 1981, 88: 463-468. PMID: 7204503, PMCID: PMC2111738, DOI: 10.1083/jcb.88.2.463.Peer-Reviewed Original Research