Skip to Main Content

Lolis Lab Research

Studies on proteins involved in inflammation, cancer, and infectious disease

Overview

Our laboratory is interested in the mechanisms of proteins involved in cancer, inflammation, and infections. To carry out our research goals we follow a multi-disciplinary strategy making use of structural biology, NMR dynamics and molecular simulations, high-throughput screening of small molecule ligands and designed biotherapeutics, and mouse models of disease. The focus in the last several years has been on chemokines, chemokine receptors (GPCRs), and the pro-inflammatory proteins macrophage migration inhibitory factor (MIF) and D-dopachrome tautomerase (D-DT) expressed in humans and in a variety of parasites.
We have determined the X-ray structures of human and parasitic MIF. Human MIF is a pro-inflammatory protein involved in sepsis, rheumatoid arthritis and other autoimmune disease, and cancer. Parasitic MIF appear to interfere or regulate the endogenous MIF and provide parasites a survival advantage.
G-protein coupled receptors (GPCRs) belong to a family proteins that counts more than 800 human members, with a characteristic seven transmembrane domain. Binding of chemokines to specific GPCRs triggers a cascade of intracellular signaling events mediated by the exchange of GDP by GTP on the Ga protein and its disassociation from the GPCR and from Gß?.
Chemokines are secreted proteins that activate G-protein coupled receptors to mediate the migration of specific cells to the appropriate anatomical locations in response to physiological signals (homeostasis) and pathophysiological insults (immunity). Some of the >40 human chemokines have roles in embryonic development or homeostasis, while most cause inflammation, autoimmune diseases, or cancer metastasis.