Featured Publications
SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data
Liu Y, Li N, Qi J, Xu G, Zhao J, Wang N, Huang X, Jiang W, Wei H, Justet A, Adams T, Homer R, Amei A, Rosas I, Kaminski N, Wang Z, Yan X. SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data. Genome Biology 2024, 25: 271. PMID: 39402626, PMCID: PMC11475911, DOI: 10.1186/s13059-024-03416-2.Peer-Reviewed Original ResearchComputational and Statistical Methods for Single-Cell RNA Sequencing Data
Wang Z, Yan X. Computational and Statistical Methods for Single-Cell RNA Sequencing Data. Springer Handbooks Of Computational Statistics 2022, 3-35. DOI: 10.1007/978-3-662-65902-1_1.ChaptersSingle-cell RNA sequencing technologySingle-cell RNA sequencing dataRNA sequencing technologyPhenotype of interestRNA sequencing dataDifferential expression analysisScRNA-seq dataStatistical methodsSequencing technologiesExpression analysisDropout imputationSequencing dataSeq dataDroplet-based technologiesDropout eventsDisease pathogenesisPopulation composition changesData normalizationHigh noise levelsPhenotypeNoise levelTherapeuticsComposition changes
2023
A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy
Deng W, Li B, Wang J, Jiang W, Yan X, Li N, Vukmirovic M, Kaminski N, Wang J, Zhao H. A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy. Briefings In Bioinformatics 2023, 24: bbac616. PMID: 36631398, PMCID: PMC9851324, DOI: 10.1093/bib/bbac616.Peer-Reviewed Original Research