Featured Publications
Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function
Yu G, Tzouvelekis A, Wang R, Herazo-Maya JD, Ibarra GH, Srivastava A, de Castro JPW, DeIuliis G, Ahangari F, Woolard T, Aurelien N, Arrojo e Drigo R, Gan Y, Graham M, Liu X, Homer RJ, Scanlan TS, Mannam P, Lee PJ, Herzog EL, Bianco AC, Kaminski N. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nature Medicine 2017, 24: 39-49. PMID: 29200204, PMCID: PMC5760280, DOI: 10.1038/nm.4447.Peer-Reviewed Original Research
2024
Noninvasive assessment of the lung inflammation-fibrosis axis by targeted imaging of CMKLR1
Mannes P, Adams T, Farsijani S, Barnes C, Latoche J, Day K, Nedrow J, Ahangari F, Kaminski N, Lee J, Tavakoli S. Noninvasive assessment of the lung inflammation-fibrosis axis by targeted imaging of CMKLR1. Science Advances 2024, 10: eadm9817. PMID: 38896611, PMCID: PMC11186491, DOI: 10.1126/sciadv.adm9817.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisFibrotic lung diseaseRisk stratificationMurine modelLung fibrosisLung diseaseModel of bleomycin-induced lung fibrosisBleomycin-induced lung fibrosisImaging biomarkersMurine model of bleomycin-induced lung fibrosisBronchoalveolar lavage cellsMonocyte-derived macrophagesPositron emission tomographyInflammatory endotypesPulmonary fibrosisLavage cellsPoor survivalNoninvasive assessmentTherapeutic monitoringEmission tomographyCMKLR1FibrosisClinical trajectoryLungLung regions
2023
An integrated cell atlas of the lung in health and disease
Sikkema L, Ramírez-Suástegui C, Strobl D, Gillett T, Zappia L, Madissoon E, Markov N, Zaragosi L, Ji Y, Ansari M, Arguel M, Apperloo L, Banchero M, Bécavin C, Berg M, Chichelnitskiy E, Chung M, Collin A, Gay A, Gote-Schniering J, Hooshiar Kashani B, Inecik K, Jain M, Kapellos T, Kole T, Leroy S, Mayr C, Oliver A, von Papen M, Peter L, Taylor C, Walzthoeni T, Xu C, Bui L, De Donno C, Dony L, Faiz A, Guo M, Gutierrez A, Heumos L, Huang N, Ibarra I, Jackson N, Kadur Lakshminarasimha Murthy P, Lotfollahi M, Tabib T, Talavera-López C, Travaglini K, Wilbrey-Clark A, Worlock K, Yoshida M, van den Berge M, Bossé Y, Desai T, Eickelberg O, Kaminski N, Krasnow M, Lafyatis R, Nikolic M, Powell J, Rajagopal J, Rojas M, Rozenblatt-Rosen O, Seibold M, Sheppard D, Shepherd D, Sin D, Timens W, Tsankov A, Whitsett J, Xu Y, Banovich N, Barbry P, Duong T, Falk C, Meyer K, Kropski J, Pe’er D, Schiller H, Tata P, Schultze J, Teichmann S, Misharin A, Nawijn M, Luecken M, Theis F. An integrated cell atlas of the lung in health and disease. Nature Medicine 2023, 29: 1563-1577. PMID: 37291214, PMCID: PMC10287567, DOI: 10.1038/s41591-023-02327-2.Peer-Reviewed Original ResearchConceptsCell atlasGene modulesCell typesCell type definitionsHuman Cell AtlasSingle-cell technologiesSingle-cell datasetsUndescribed cell typeMultiple lung diseasesCell statesMarker genesMonocyte-derived macrophagesDistal axisStudy of diseasesHuman tissuesAnnotationAtlasGenesSPP1DiversityExpressionTreesLimited numberCellsNew data
2022
From COVID to fibrosis: lessons from single-cell analyses of the human lung
Justet A, Zhao AY, Kaminski N. From COVID to fibrosis: lessons from single-cell analyses of the human lung. Human Genomics 2022, 16: 20. PMID: 35698166, PMCID: PMC9189802, DOI: 10.1186/s40246-022-00393-0.Peer-Reviewed Original ResearchConceptsSingle-cell RNA-sequencing technologySingle-cell RNA sequencingRNA-sequencing technologyGene expression patternsMonocyte-derived macrophage populationSingle-cell analysisCell populationsLung diseaseCellular phenotypesRNA sequencingExpression patternsGene expressionAberrant repairMultiple tissuesPulmonary fibrosisMechanisms of diseaseFibrotic interstitial lung diseaseLife-threatening complicationsProgressive lung diseaseCOVID-19 pneumoniaInterstitial lung diseaseParenchymal lung diseaseAcute viral diseaseMacrophage populationsNovel cellPseudohypoxic HIF pathway activation dysregulates collagen structure-function in human lung fibrosis
Brereton CJ, Yao L, Davies ER, Zhou Y, Vukmirovic M, Bell JA, Wang S, Ridley RA, Dean L, Andriotis OG, Conforti F, Brewitz L, Mohammed S, Wallis T, Tavassoli A, Ewing RM, Alzetani A, Marshall BG, Fletcher SV, Thurner PJ, Fabre A, Kaminski N, Richeldi L, Bhaskar A, Schofield CJ, Loxham M, Davies DE, Wang Y, Jones MG. Pseudohypoxic HIF pathway activation dysregulates collagen structure-function in human lung fibrosis. ELife 2022, 11: e69348. PMID: 35188460, PMCID: PMC8860444, DOI: 10.7554/elife.69348.Peer-Reviewed Original ResearchConceptsHIF pathway activationPathway activationLung fibrosisOxidative stressHuman lung fibrosisOxidative stress scoreFibrillar collagen synthesisHypoxia-inducible factor (HIF) pathway activationExtracellular matrixActive fibrogenesisFibrosisHuman fibrosisFibrosis tissueHIF activationStress scoresVivo studiesCollagen synthesisMesenchymal cellsCritical pathwaysDownstream activationNormal fibroblastsCritical regulatorHIFActivationHuman tissues
2021
Macrophage-derived netrin-1 drives adrenergic nerve–associated lung fibrosis
Gao R, Peng X, Perry C, Sun H, Ntokou A, Ryu C, Gomez JL, Reeves BC, Walia A, Kaminski N, Neumark N, Ishikawa G, Black KE, Hariri LP, Moore MW, Gulati M, Homer RJ, Greif DM, Eltzschig HK, Herzog EL. Macrophage-derived netrin-1 drives adrenergic nerve–associated lung fibrosis. Journal Of Clinical Investigation 2021, 131: e136542. PMID: 33393489, PMCID: PMC7773383, DOI: 10.1172/jci136542.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBleomycinFemaleLungMacrophagesMaleMiceMice, TransgenicNetrin-1NorepinephrinePulmonary FibrosisConceptsNetrin-1Lung fibrosisCell-specific knockout miceΑ1-adrenoreceptor blockadeIPF lung tissueNeuronal guidance proteinsNetrin-1 expressionExtracellular matrix accumulationAdrenergic processesAdrenoreceptor antagonismAdrenoreceptor blockadeFibrotic histologyInflammatory scarringIPF cohortAdrenergic nervesΑ1-blockersImproved survivalColorectal carcinomaLung tissueKnockout miceCollagen accumulationFibrosisMatrix accumulationMacrophagesGuidance proteins
2020
Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis
Tsukui T, Sun KH, Wetter JB, Wilson-Kanamori JR, Hazelwood LA, Henderson NC, Adams TS, Schupp JC, Poli SD, Rosas IO, Kaminski N, Matthay MA, Wolters PJ, Sheppard D. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications 2020, 11: 1920. PMID: 32317643, PMCID: PMC7174390, DOI: 10.1038/s41467-020-15647-5.Peer-Reviewed Original ResearchConceptsCollagen-producing cellsSitu hybridization showDisease-relevant phenotypesCell atlasDistinct localizationExpression of CTHRC1Fibrotic lungsDifferent compartmentsPulmonary fibrosisDistinct anatomical localizationCellsCTHRC1Murine lungFibroblastsIdiopathic pulmonary fibrosisAdoptive transfer experimentsLocalizationSubpopulationsComplex architectureTransfer experimentsFibroblastic fociPathologic fibrosisPathologic scarringScleroderma patientsSimilar heterogeneity
2019
Role of dual-specificity protein phosphatase DUSP10/MKP-5 in pulmonary fibrosis
Xylourgidis N, Min K, Ahangari F, Yu G, Herazo-Maya JD, Karampitsakos T, Aidinis V, Binzenhöfer L, Bouros D, Bennett AM, Kaminski N, Tzouvelekis A. Role of dual-specificity protein phosphatase DUSP10/MKP-5 in pulmonary fibrosis. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2019, 317: l678-l689. PMID: 31483681, PMCID: PMC6879900, DOI: 10.1152/ajplung.00264.2018.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibiotics, AntineoplasticBleomycinDual-Specificity PhosphatasesFemaleFibroblastsHumansMAP Kinase Signaling SystemMiceMice, Inbred C57BLMice, KnockoutMitogen-Activated Protein Kinase PhosphatasesPhosphorylationPulmonary FibrosisSignal TransductionTransforming Growth Factor beta1ConceptsPulmonary fibrosisLung fibrosisFibrogenic genesLung fibroblastsM1 macrophage phenotypeIdiopathic pulmonary fibrosisHuman lung fibrosisGrowth factor-β1Levels of hydroxyprolineProtein kinase phosphatase 5IPF lungsReduced fibrosisMuscle fibrosisProfibrogenic effectsTGF-β1Smad7 levelsTherapeutic targetAnimal modelsFactor-β1FibrosisSmad3 phosphorylationEnhanced p38 MAPK activityP38 MAPK activityMyofibroblast differentiationMKP-5 expression
2016
Plexin C1 deficiency permits synaptotagmin 7–mediated macrophage migration and enhances mammalian lung fibrosis
Peng X, Moore M, Mathur A, Zhou Y, Sun H, Gan Y, Herazo‐Maya J, Kaminski N, Hu X, Pan H, Ryu C, Osafo‐Addo A, Homer RJ, Feghali‐Bostwick C, Fares W, Gulati M, Hu B, Lee C, Elias JA, Herzog EL. Plexin C1 deficiency permits synaptotagmin 7–mediated macrophage migration and enhances mammalian lung fibrosis. The FASEB Journal 2016, 30: 4056-4070. PMID: 27609773, PMCID: PMC5102121, DOI: 10.1096/fj.201600373r.Peer-Reviewed Original ResearchConceptsLung fibrosisPlexin C1Macrophage migrationPulmonary fibrosisBone marrow-derived cellsSynaptotagmin-7Idiopathic pulmonary fibrosisInterstitial lung diseaseMarrow-derived cellsTGF-β1 overexpressionFatal conditionLung diseaseMonocyte migrationUnrecognized observationCollagen accumulationFibrosisMice showBoyden chamberGenetic deletionLungMouse macrophagesSemaphorin receptorsMacrophagesC1s deficiencyDeficiencyGenome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia
Fingerlin TE, Zhang W, Yang IV, Ainsworth HC, Russell PH, Blumhagen RZ, Schwarz MI, Brown KK, Steele MP, Loyd JE, Cosgrove GP, Lynch DA, Groshong S, Collard HR, Wolters PJ, Bradford WZ, Kossen K, Seiwert SD, du Bois RM, Garcia CK, Devine MS, Gudmundsson G, Isaksson HJ, Kaminski N, Zhang Y, Gibson KF, Lancaster LH, Maher TM, Molyneaux PL, Wells AU, Moffatt MF, Selman M, Pardo A, Kim DS, Crapo JD, Make BJ, Regan EA, Walek DS, Daniel JJ, Kamatani Y, Zelenika D, Murphy E, Smith K, McKean D, Pedersen BS, Talbert J, Powers J, Markin CR, Beckman KB, Lathrop M, Freed B, Langefeld CD, Schwartz DA. Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia. BMC Genomic Data 2016, 17: 74. PMID: 27266705, PMCID: PMC4895966, DOI: 10.1186/s12863-016-0377-2.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedChromosomes, Human, Pair 6FemaleGene Expression ProfilingGene Expression RegulationGenetic LociGenetic Predisposition to DiseaseGenome-Wide Association StudyHLA-DQ beta-ChainsHLA-DRB1 ChainsHumansIdiopathic Pulmonary FibrosisLinkage DisequilibriumMaleMiddle AgedPulmonary FibrosisSequence Analysis, RNAConceptsRisk lociGenome-wide single nucleotide polymorphism (SNP) dataGenome-wide significant associationSingle nucleotide polymorphism dataGenome-wide genotypesRNA sequencing studiesNucleotide polymorphism dataTargeted gene expressionIdiopathic interstitial pneumoniaHigh linkage disequilibriumLung tissueGene regulationHLA allelesRNA sequencingPolymorphism dataRisk allelesGene expressionChromosome 6Protein structureInterstitial pneumoniaHLA regionSequencing studiesGenetic risk allelesAssociation analysisReplication genotyping
2015
FK506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis
Staab-Weijnitz CA, Fernandez IE, Knüppel L, Maul J, Heinzelmann K, Juan-Guardela BM, Hennen E, Preissler G, Winter H, Neurohr C, Hatz R, Lindner M, Behr J, Kaminski N, Eickelberg O. FK506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2015, 192: 455-467. PMID: 26039104, PMCID: PMC4595665, DOI: 10.1164/rccm.201412-2233oc.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisPrimary human lung fibroblastsGrowth factor-β1Endoplasmic reticulum stressPulmonary fibrosisFKBP10 expressionLung fibrosisNovel drug targetsControl subjectsFactor-β1Protein 10Immunofluorescent stainingReticulum stressReverse transcriptase-polymerase chain reactionQuantitative reverse transcriptase-polymerase chain reactionTranscriptase-polymerase chain reactionSmooth muscle actinPotential novel drug targetsHuman lung fibroblastsCollagen secretionDrug targetsWestern blot analysisProfibrotic mediatorsU.S. cohortGerman cohortMatrix metalloproteinase (MMP)-19-deficient fibroblasts display a profibrotic phenotype
Jara P, Calyeca J, Romero Y, Plácido L, Yu G, Kaminski N, Maldonado V, Cisneros J, Selman M, Pardo A. Matrix metalloproteinase (MMP)-19-deficient fibroblasts display a profibrotic phenotype. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2015, 308: l511-l522. PMID: 25575513, PMCID: PMC5243210, DOI: 10.1152/ajplung.00043.2014.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisBleomycin-induced lung fibrosisLung fibroblastsLethal interstitial lung diseaseInterstitial lung diseaseExcessive extracellular matrix productionWild-type miceMatrix metalloproteinase-19Activation of fibroblastsCollagen protein productionMyofibroblastic fociPulmonary fibrosisLung fibrosisLung diseaseProfibrotic pathwaysUnknown etiologyFibroblast gene expressionDeficient miceProfibrotic phenotypeSmooth muscleMatrix metalloproteinaseMetalloproteinase 19Boyden chamberAbnormal lungMMP-19
2014
MicroRNA mimicry blocks pulmonary fibrosis
Montgomery RL, Yu G, Latimer PA, Stack C, Robinson K, Dalby CM, Kaminski N, van Rooij E. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Molecular Medicine 2014, 6: 1347-1356. PMID: 25239947, PMCID: PMC4287936, DOI: 10.15252/emmm.201303604.Peer-Reviewed Original ResearchThe Mitochondrial Cardiolipin Remodeling Enzyme Lysocardiolipin Acyltransferase Is a Novel Target in Pulmonary Fibrosis
Huang LS, Mathew B, Li H, Zhao Y, Ma SF, Noth I, Reddy SP, Harijith A, Usatyuk PV, Berdyshev EV, Kaminski N, Zhou T, Zhang W, Zhang Y, Rehman J, Kotha SR, Gurney TO, Parinandi NL, Lussier YA, Garcia JG, Natarajan V. The Mitochondrial Cardiolipin Remodeling Enzyme Lysocardiolipin Acyltransferase Is a Novel Target in Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2014, 189: 1402-1415. PMID: 24779708, PMCID: PMC4098083, DOI: 10.1164/rccm.201310-1917oc.Peer-Reviewed Original ResearchMeSH Keywords1-Acylglycerol-3-Phosphate O-AcyltransferaseAcyltransferasesAnimalsBiomarkersCardiolipinsCohort StudiesDisease Models, AnimalHumansIdiopathic Pulmonary FibrosisIn Situ HybridizationLeukocytes, MononuclearMiceMitochondriaPredictive Value of TestsPulmonary FibrosisRNA, MessengerSensitivity and SpecificitySeverity of Illness IndexConceptsPeripheral blood mononuclear cellsIdiopathic pulmonary fibrosisPulmonary fibrosisMurine modelAlveolar epithelial cellsOverall survivalReactive oxygen species generationLysocardiolipin acyltransferaseOxygen species generationCarbon monoxide diffusion capacityRadiation-induced pulmonary fibrosisPulmonary function outcomesEpithelial cellsBlood mononuclear cellsPreclinical murine modelsNovel therapeutic approachesSpecies generationBleomycin challengeLung inflammationLung protectionPulmonary functionFunction outcomesLung fibrosisMononuclear cellsFibrotic lungsNrf2 Amplifies Oxidative Stress via Induction of Klf9
Zucker SN, Fink EE, Bagati A, Mannava S, Bianchi-Smiraglia A, Bogner PN, Wawrzyniak JA, Foley C, Leonova KI, Grimm MJ, Moparthy K, Ionov Y, Wang J, Liu S, Sexton S, Kandel ES, Bakin AV, Zhang Y, Kaminski N, Segal BH, Nikiforov MA. Nrf2 Amplifies Oxidative Stress via Induction of Klf9. Molecular Cell 2014, 53: 916-928. PMID: 24613345, PMCID: PMC4049522, DOI: 10.1016/j.molcel.2014.01.033.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesBleomycinCell Line, TumorGene Expression RegulationGenes, ReporterHumansKruppel-Like Transcription FactorsLuciferasesLungMiceNF-E2-Related Factor 2NIH 3T3 CellsOxidative StressPromoter Regions, GeneticProtein BindingPulmonary FibrosisReactive Oxygen SpeciesSignal TransductionConceptsReactive oxygen speciesKey transcriptional regulatorMetabolism of ROSOxidative stressPathogenesis of bleomycinKruppel-like factor 9Thioredoxin reductase 2Subsequent cell deathTranscription factor 2Antioxidant gene expressionUbiquitous regulatorsTranscriptional regulatorsIntracellular reactive oxygen speciesLung injuryFeedforward regulationPulmonary fibrosisGene expressionOxidant injuryROS clearanceCell deathReductase 2Mouse tissuesCultured cellsNF-E2Factor 9Let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts
Huleihel L, Ben-Yehudah A, Milosevic J, Yu G, Pandit K, Sakamoto K, Yousef H, LeJeune M, Coon TA, Redinger CJ, Chensny L, Manor E, Schatten G, Kaminski N. Let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2014, 306: l534-l542. PMID: 24441869, PMCID: PMC3949080, DOI: 10.1152/ajplung.00149.2013.Peer-Reviewed Original ResearchMeSH KeywordsActinsCadherinsCalcium-Binding ProteinsCell MovementCell ProliferationCells, CulturedEpithelial-Mesenchymal TransitionFibroblastsFibronectinsHMGA2 ProteinHMGB2 ProteinHumansIdiopathic Pulmonary FibrosisKeratin-19LungMicroRNAsMyofibroblastsPulmonary AlveoliPulmonary FibrosisS100 Calcium-Binding Protein A4Snail Family Transcription FactorsTranscription FactorsTransfectionTransforming Growth Factor betaWound HealingZonula Occludens-1 ProteinConceptsLet-7dFibroblast-specific protein-1Mesenchymal marker αProtein 1Tight junction protein 1Smooth muscle actinMicroRNA Let-7dLung fibrosisProliferation of fibroblastsFibrotic processPrimary fibroblastsEffect of transfectionMuscle actinMesenchymal transitionLung fibroblastsFibroblast responsivenessMesenchymal propertiesKeratin 19Protein expressionEpithelial cellsWound healingN-cadherinProtein inductionReduced motilityTGF
2013
Gene expression profiles reveal molecular mechanisms involved in the progression and resolution of bleomycin-induced lung fibrosis
Cabrera S, Selman M, Lonzano-Bolaños A, Konishi K, Richards TJ, Kaminski N, Pardo A. Gene expression profiles reveal molecular mechanisms involved in the progression and resolution of bleomycin-induced lung fibrosis. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2013, 304: l593-l601. PMID: 23457188, PMCID: PMC4116413, DOI: 10.1152/ajplung.00320.2012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBleomycinExtracellular Matrix ProteinsInflammationMiceMice, Inbred C57BLNF-kappa BPulmonary FibrosisTranscriptomeUp-RegulationConceptsLung fibrosisFibrotic responseResolution of bleomycinTranscriptional signatureGene expression profilesGene microarray analysisC57BL/6 miceProminent inflammationSingle doseExtracellular matrix-related genesInitial progressionControl animalsTIMP-1Normal architectureExpression profilesFibrosisMatrix metalloproteinasesHydroxyproline contentBleomycinMatrix-related genesSubsequent resolutionProgressionInflammationEqual volumeMicroarray analysis
2012
Profibrotic Role of miR-154 in Pulmonary Fibrosis
Milosevic J, Pandit K, Magister M, Rabinovich E, Ellwanger DC, Yu G, Vuga LJ, Weksler B, Benos PV, Gibson KF, McMillan M, Kahn M, Kaminski N. Profibrotic Role of miR-154 in Pulmonary Fibrosis. American Journal Of Respiratory Cell And Molecular Biology 2012, 47: 879-887. PMID: 23043088, PMCID: PMC3547095, DOI: 10.1165/rcmb.2011-0377oc.Peer-Reviewed Original ResearchMeSH KeywordsCase-Control StudiesCell MovementCell ProliferationCells, CulturedChromosomes, Human, Pair 14Cyclin-Dependent Kinase Inhibitor p15FibroblastsGene ExpressionHumansLungMicroRNAsMultigene FamilyOligonucleotide Array Sequence AnalysisPulmonary FibrosisRNA InterferenceTranscriptomeTransforming Growth Factor beta1Wnt Signaling PathwayConceptsIdiopathic pulmonary fibrosisNormal human lung fibroblastsMiR-154IPF lungsPulmonary fibrosisIPF fibroblastsProgressive interstitial lung diseaseInterstitial lung diseaseWnt/β-catenin pathwayHuman lung fibroblastsΒ-catenin pathwayTGF-β1 stimulationBinding of Smad3Quantitative RT-PCRLung diseaseProfibrotic roleExpression of microRNAsICG-001MiR-134Unknown originMiR-382MiR-487bProliferative effectLung fibroblastsMiR-410Personalized medicine: applying omics to lung fibrosis
Herazo-Maya JD, Kaminski N. Personalized medicine: applying omics to lung fibrosis. Biomarkers In Medicine 2012, 6: 529-540. PMID: 22917154, PMCID: PMC3517740, DOI: 10.2217/bmm.12.38.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisFibrotic lung diseaseLung transplantPulmonary fibrosisLung fibrosisLung diseaseUnknown etiologyChronic diseasesSporadic formsHigh mortalityPatient careTreatment of diseasesDrug studiesCost-effective strategyDiseaseFibrosisDiagnosisPersonalized medicinePatientsTransplantEtiologyTherapyMortalityCarePrevention
2011
Matrix Metalloproteinase 3 Is a Mediator of Pulmonary Fibrosis
Yamashita CM, Dolgonos L, Zemans RL, Young SK, Robertson J, Briones N, Suzuki T, Campbell MN, Gauldie J, Radisky DC, Riches DW, Yu G, Kaminski N, McCulloch CA, Downey GP. Matrix Metalloproteinase 3 Is a Mediator of Pulmonary Fibrosis. American Journal Of Pathology 2011, 179: 1733-1745. PMID: 21871427, PMCID: PMC3181358, DOI: 10.1016/j.ajpath.2011.06.041.Peer-Reviewed Original ResearchMeSH KeywordsAdenoviridaeAnimalsBeta CateninBleomycinCadherinsCyclin D1Disease Models, AnimalEpithelial CellsEpithelial-Mesenchymal TransitionFemaleGene Expression Regulation, EnzymologicGenetic VectorsHumansLungMatrix Metalloproteinase 2Matrix Metalloproteinase 3Matrix Metalloproteinase 9MiceMice, Inbred C57BLProtein TransportPulmonary FibrosisRatsRats, Sprague-DawleyRNA, MessengerSignal TransductionTransforming Growth Factor betaConceptsIdiopathic pulmonary fibrosisMatrix metalloproteinase-3Pathogenesis of IPFPulmonary fibrosisEpithelial-mesenchymal transitionMetalloproteinase-3Recombinant MMP-3Accumulation of myofibroblastsΒ-cateninCultured lung epithelial cellsAberrant repair processProliferation of myofibroblastsAdenoviral vector-mediated expressionMMP-3 expressionLung epithelial cellsCyclin D1 expressionVector-mediated expressionQuantitative RT-PCRWestern blot analysisΒ-catenin signalingEpithelial injuryLung architectureVitro treatmentRat lungFibrosis