2014
Secreted Phosphoprotein 1 Is a Determinant of Lung Function Development in Mice
Ganguly K, Martin TM, Concel VJ, Upadhyay S, Bein K, Brant KA, George L, Mitra A, Thimraj TA, Fabisiak JP, Vuga LJ, Fattman C, Kaminski N, Schulz H, Leikauf GD. Secreted Phosphoprotein 1 Is a Determinant of Lung Function Development in Mice. American Journal Of Respiratory Cell And Molecular Biology 2014, 51: 637-651. PMID: 24816281, PMCID: PMC4224082, DOI: 10.1165/rcmb.2013-0471oc.Peer-Reviewed Original ResearchMeSH KeywordsAlveolar Epithelial CellsAnimalsAnimals, NewbornCore Binding Factor Alpha 1 SubunitFemaleGene Expression Regulation, DevelopmentalLung ComplianceMaleMice, Inbred C3HMice, Inbred C57BLMice, KnockoutOligonucleotide Array Sequence AnalysisOsteopontinPromoter Regions, GeneticPulmonary AlveoliPulmonary Disease, Chronic ObstructiveReceptor, Notch1ConceptsMicroarray analysisPhosphoprotein 1Quantitative trait lociLung functionQuantitative RT-PCR analysisDNA-protein bindingRunt-related transcription factor 2Transcription factor 2Developmental transcriptsLung developmentTrait lociNumerous genesSecreted Phosphoprotein 1Notch1 transcriptsRT-PCR analysisInsulin-like growth factor-1C3H/HeJ miceDiminished lung functionLung function developmentSPP1 promoterSPP1Growth factor-1Mean airspace chord lengthC3H/HeJGenetic variantsNrf2 Amplifies Oxidative Stress via Induction of Klf9
Zucker SN, Fink EE, Bagati A, Mannava S, Bianchi-Smiraglia A, Bogner PN, Wawrzyniak JA, Foley C, Leonova KI, Grimm MJ, Moparthy K, Ionov Y, Wang J, Liu S, Sexton S, Kandel ES, Bakin AV, Zhang Y, Kaminski N, Segal BH, Nikiforov MA. Nrf2 Amplifies Oxidative Stress via Induction of Klf9. Molecular Cell 2014, 53: 916-928. PMID: 24613345, PMCID: PMC4049522, DOI: 10.1016/j.molcel.2014.01.033.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesBleomycinCell Line, TumorGene Expression RegulationGenes, ReporterHumansKruppel-Like Transcription FactorsLuciferasesLungMiceNF-E2-Related Factor 2NIH 3T3 CellsOxidative StressPromoter Regions, GeneticProtein BindingPulmonary FibrosisReactive Oxygen SpeciesSignal TransductionConceptsReactive oxygen speciesKey transcriptional regulatorMetabolism of ROSOxidative stressPathogenesis of bleomycinKruppel-like factor 9Thioredoxin reductase 2Subsequent cell deathTranscription factor 2Antioxidant gene expressionUbiquitous regulatorsTranscriptional regulatorsIntracellular reactive oxygen speciesLung injuryFeedforward regulationPulmonary fibrosisGene expressionOxidant injuryROS clearanceCell deathReductase 2Mouse tissuesCultured cellsNF-E2Factor 9
2013
Functional Genomic Assessment of Phosgene-Induced Acute Lung Injury in Mice
Leikauf GD, Concel VJ, Bein K, Liu P, Berndt A, Martin TM, Ganguly K, Jang AS, Brant KA, Dopico RA, Upadhyay S, Cario C, Di YP, Vuga LJ, Kostem E, Eskin E, You M, Kaminski N, Prows DR, Knoell DL, Fabisiak JP. Functional Genomic Assessment of Phosgene-Induced Acute Lung Injury in Mice. American Journal Of Respiratory Cell And Molecular Biology 2013, 49: 130522202035005. PMID: 23590305, PMCID: PMC3824050, DOI: 10.1165/rcmb.2012-0337oc.Peer-Reviewed Original ResearchMeSH KeywordsAcute Lung InjuryAllelesAnimalsChemical Warfare AgentsChromosome MappingElectrophoretic Mobility Shift AssayFemaleGene ExpressionGene Expression ProfilingGenomeGenome-Wide Association StudyGenomicsGenotypeIntegrinsLungMiceMice, Inbred StrainsOligonucleotide Array Sequence AnalysisPhosgenePolymorphism, Single NucleotidePromoter Regions, GeneticReelin ProteinSodium-Potassium-Exchanging ATPaseConceptsSignificant SNP associationsSNP associationsTranscriptomic analysisCompetitive electrophoretic mobility shift analysisGenome-wide association mappingFunctional genomic assessmentPutative transcription factorElectrophoretic mobility shift analysisMobility shift analysisAssociation mappingGenetic resolutionTranscription factorsCandidate genesFunctional domainsNonsynonymous SNPsGenomic assessmentPhenotypic differencesPhenotypic extremesDiverse panelGenesGenetic determinantsShift analysisPTPRTAllelesITGA9Association Between the MUC5B Promoter Polymorphism and Survival in Patients With Idiopathic Pulmonary Fibrosis
Peljto AL, Zhang Y, Fingerlin TE, Ma SF, Garcia JG, Richards TJ, Silveira LJ, Lindell KO, Steele MP, Loyd JE, Gibson KF, Seibold MA, Brown KK, Talbert JL, Markin C, Kossen K, Seiwert SD, Murphy E, Noth I, Schwarz MI, Kaminski N, Schwartz DA. Association Between the MUC5B Promoter Polymorphism and Survival in Patients With Idiopathic Pulmonary Fibrosis. JAMA 2013, 309: 2232-2239. PMID: 23695349, PMCID: PMC4545271, DOI: 10.1001/jama.2013.5827.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisChicago cohortPulmonary fibrosisImproved survivalPromoter polymorphismInterstitial lung disease clinicMUC5B Promoter PolymorphismPrimary end pointNumber of patientsTT genotype groupCommon risk polymorphismsChicago patientsIPF mortalityMedian followCause mortalityCumulative incidenceMechanisms of diseaseDisease clinicRetrospective studyVital capacityClinical trialsBlood concentrationsClinical covariatesMAIN OUTCOMETreatment status
2012
Allele-specific transactivation of matrix metalloproteinase 7 by FOXA2 and correlation with plasma levels in idiopathic pulmonary fibrosis
Richards TJ, Park C, Chen Y, Gibson KF, Di Y, Pardo A, Watkins SC, Choi AM, Selman M, Pilewski J, Kaminski N, Zhang Y. Allele-specific transactivation of matrix metalloproteinase 7 by FOXA2 and correlation with plasma levels in idiopathic pulmonary fibrosis. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2012, 302: l746-l754. PMID: 22268124, PMCID: PMC3331579, DOI: 10.1152/ajplung.00319.2011.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisMatrix metalloproteinase-7Plasma levelsIPF patientsPulmonary fibrosisMetalloproteinase-7MMP7 promoterIPF cohortIPF lungsPeripheral bloodHealthy controlsEmbryonic lung developmentPromoter polymorphismAA genotypeCT genotypeForkhead box A2 transcription factorMature lungLung developmentLungEpithelial cellsRs11568818PatientsFibrosisUpregulationKey regulator
2011
High Throughput Determination of TGFβ1/SMAD3 Targets in A549 Lung Epithelial Cells
Zhang Y, Handley D, Kaplan T, Yu H, Bais AS, Richards T, Pandit KV, Zeng Q, Benos PV, Friedman N, Eickelberg O, Kaminski N. High Throughput Determination of TGFβ1/SMAD3 Targets in A549 Lung Epithelial Cells. PLOS ONE 2011, 6: e20319. PMID: 21625455, PMCID: PMC3098871, DOI: 10.1371/journal.pone.0020319.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceCell LineChromatin ImmunoprecipitationDNA PrimersElectrophoretic Mobility Shift AssayEpithelial CellsHumansLungOligonucleotide Array Sequence AnalysisPromoter Regions, GeneticProtein BindingReverse Transcriptase Polymerase Chain ReactionSmad3 ProteinTransforming Growth Factor beta1ConceptsGene expression microarraysLung epithelial cellsMolecular pathwaysTranscriptional regulationExpression microarraysGlobal transcriptional regulationTGFβ1/Smad3Epithelial cellsHuman promoter regionsSignal transduction cascadeTarget gene expressionEpithelial cell phenotypeGene expression analysisTranscription factor Smad3Primary lung epithelial cellsSmad3 targetsQuantitative real-time RT-PCRFOXA2 promoterHuman A549 alveolar epithelial cellsChromatin immunoprecipitationTransduction cascadeTarget genesA549 lung epithelial cellsExpression analysisGene expressionFinding subtypes of transcription factor motif pairs with distinct regulatory roles
Bais AS, Kaminski N, Benos PV. Finding subtypes of transcription factor motif pairs with distinct regulatory roles. Nucleic Acids Research 2011, 39: e76-e76. PMID: 21486752, PMCID: PMC3113591, DOI: 10.1093/nar/gkr205.Peer-Reviewed Original ResearchConceptsTF binding sitesTranscription factorsDownstream regulationMotif pairsTF-DNA binding specificityBinding preferencesDNA binding specificityDNA binding preferencesDistinct regulatory rolesDownstream regulatory effectsMultiple regulatory pathwaysDifferent binding preferencesDyad motifDNA sequencesSequence elementsRegulatory pathwaysBinding specificityRegulatory roleDifferential recruitmentBinding sitesMotif discoveryRegulationCofactorMotifDistinct modes
2009
Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data
Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV. Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data. PLOS ONE 2009, 4: e5279. PMID: 19390574, PMCID: PMC2668758, DOI: 10.1371/journal.pone.0005279.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsChromatin ImmunoprecipitationComputational BiologyCpG IslandsHumansMicroRNAsPromoter Regions, GeneticRNA Polymerase IIRNA, UntranslatedConceptsProtein coding genesMiRNA genesCoding genesIntragenic miRNAsPol II chromatin immunoprecipitationNon-coding RNA regulatorsRNA polymerase II promoterChromatin immunoprecipitation dataDiverse biological processesOwn unique promoterPolymerase II promoterTranscription start siteIntergenic miRNAsTranscription regulationMiRNA promotersRNA regulatorsChromatin immunoprecipitationPromoter organizationHost genesPrimary transcriptTranscript organizationStart siteImmunoprecipitation dataUnique promoterBiological processes
2008
Transgelin is a direct target of TGF‐β/Smad3‐dependent epithelial cell migration in lung fibrosis
Yu H, Königshoff M, Jayachandran A, Handley D, Seeger W, Kaminski N, Eickelberg O. Transgelin is a direct target of TGF‐β/Smad3‐dependent epithelial cell migration in lung fibrosis. The FASEB Journal 2008, 22: 1778-1789. PMID: 18245174, DOI: 10.1096/fj.07-083857.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisReverse transcription-polymerase chain reactionLung fibrosisATII cellsPulmonary fibrosisType II cell hyperplasiaExcessive extracellular matrix depositionATII cell phenotypeCell phenotypeTranscription-polymerase chain reactionLung epithelial A549 cellsPrimary ATII cellsActivin-like kinase 5Epithelial A549 cellsTGF-beta treatmentExtracellular matrix depositionTransgelin geneIPF patientsTGF-beta signalingCell hyperplasiaTGF-beta target genesCell injuryLung specimenFibrosisFatal disease