2019
Integrating multiomics longitudinal data to reconstruct networks underlying lung development
Ding J, Ahangari F, Espinoza CR, Chhabra D, Nicola T, Yan X, Lal CV, Hagood JS, Kaminski N, Bar-Joseph Z, Ambalavanan N. Integrating multiomics longitudinal data to reconstruct networks underlying lung development. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2019, 317: l556-l568. PMID: 31432713, PMCID: PMC6879899, DOI: 10.1152/ajplung.00554.2018.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornChildChild, PreschoolDNA MethylationEpigenesis, GeneticFemaleGene Expression ProfilingGene Expression Regulation, DevelopmentalGene Regulatory NetworksHigh-Throughput Nucleotide SequencingHumansImmunity, InnateInfantInfant, NewbornLungMaleMiceMice, Inbred C57BLMicroRNAsOrganogenesisProteomicsPulmonary AlveoliRNA, MessengerSingle-Cell AnalysisTranscriptomeConceptsSingle-cell RNA-seq dataLung developmentDynamic regulatory networksOmics data setsRNA-seq dataIndividual cell typesHuman lung developmentRegulatory networksDNA methylationLaser capture microdissectionEpigenetic changesExpression trajectoriesKey pathwaysCell typesActive pathwaysCapture microdissectionRegulatorKey eventsInnate immunityNew insightsSpecific key eventsPathwayComprehensive understandingProteomicsMethylation
2018
iDREM: Interactive visualization of dynamic regulatory networks
Ding J, Hagood JS, Ambalavanan N, Kaminski N, Bar-Joseph Z. iDREM: Interactive visualization of dynamic regulatory networks. PLOS Computational Biology 2018, 14: e1006019. PMID: 29538379, PMCID: PMC5868853, DOI: 10.1371/journal.pcbi.1006019.Peer-Reviewed Original ResearchConceptsDynamic regulatory networksRegulatory networksHigh-throughput time series dataInteraction dataProtein-DNA interaction dataSingle-cell RNA-seqTime series gene expression dataStatic datasetsInteractive visualizationGene expression dataData typesRNA-seqTime series dataBiological processesExpression dataMiRNA expressionNetworkSeries dataImportant challengeNew versionDevelopmental dataNovel hypothesisUnified modelMultiple labsRecent years
2013
Reconstructing dynamic microRNA-regulated interaction networks
Schulz MH, Pandit KV, Cardenas C, Ambalavanan N, Kaminski N, Bar-Joseph Z. Reconstructing dynamic microRNA-regulated interaction networks. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 15686-15691. PMID: 23986498, PMCID: PMC3785769, DOI: 10.1073/pnas.1303236110.Peer-Reviewed Original ResearchConceptsTranscription factorsGene expressionDynamic Regulatory Events MinerTemporal gene expressionDynamic regulatory networksSpecific developmental phasesMRNA expression dataLung developmentRegulatory networksMiRNA targetsInteraction networksImportant miRNAsExpression dataMiRNAsAdditional miRNAsLung differentiationDevelopmental phasesMiRNAPostnatal lung developmentProgression pathwaysProliferation assaysExpressionRegulationMRNA expressionMicroRNAs
2011
Mouse Conjunctival Forniceal Gene Expression during Postnatal Development and Its Regulation by Krüppel-like Factor 4
Gupta D, Harvey SA, Kaminski N, Swamynathan SK. Mouse Conjunctival Forniceal Gene Expression during Postnatal Development and Its Regulation by Krüppel-like Factor 4. Investigative Ophthalmology & Visual Science 2011, 52: 4951-4962. PMID: 21398290, PMCID: PMC3176043, DOI: 10.1167/iovs.10-7068.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsConjunctivaEpithelial CellsFemaleGene Expression ProfilingGene Expression Regulation, DevelopmentalGenotypeGoblet CellsIn Situ HybridizationKruppel-Like Factor 4Kruppel-Like Transcription FactorsMaleMiceOligonucleotide Array Sequence AnalysisReverse Transcriptase Polymerase Chain ReactionTranscription FactorsConceptsKLF4 target genesGene expressionTarget genesEts transcription factor family memberCell developmentTranscription factor family membersGene regulatory networksGoblet cell developmentLaser microdissectionComponents of pathwaysTranscription factor SPDEFFactor family membersMesenchymal-epithelial transitionKrüppel-like factor 4Regulatory networksRegulatory targetsRole of KLF4Spatiotemporal expressionQuantitative RT-PCRGlycoprotein biosynthesisMucosal epitheliumGoblet cellsGenesKLF4Transcripts
2008
Network analysis of temporal effects of intermittent and sustained hypoxia on rat lungs
Wu W, Dave NB, Yu G, Strollo PJ, Kovkarova-Naumovski E, Ryter SW, Reeves SR, Dayyat E, Wang Y, Choi AM, Gozal D, Kaminski N. Network analysis of temporal effects of intermittent and sustained hypoxia on rat lungs. Physiological Genomics 2008, 36: 24-34. PMID: 18826996, PMCID: PMC2604785, DOI: 10.1152/physiolgenomics.00258.2007.Peer-Reviewed Original ResearchConceptsSystems biology approachEstrogen receptor 1Lung responseQuantitative real-time PCRRat lungBiology approachIntermittent hypoxiaExpression patternsSustained hypoxiaReal-time PCRDistinct gene expression patternsDifferent temporal expression patternsDownstream physiological effectsGene expression patternsTemporal expression patternsSteroid hormone receptor activityGene expression profilesTemporal expression changesRegulatory networksHormone receptor activityPulmonary hypertensionKey proteinsGene expressionMolecular networksExpression changes