2024
Fibrotic cocktail treated human precision lung slices replicate the cellular diversity of the IPF lung
Justet A, Pineda H, Adams T, Balayev A, Mitash N, Ishizuka M, Kim H, Khoury J, Cala-García J, Flint J, Schupp J, Ahangari F, Yan X, Rosas I, Kaminski N, Königshoff M. Fibrotic cocktail treated human precision lung slices replicate the cellular diversity of the IPF lung. Revue Des Maladies Respiratoires 2024, 41: 218. DOI: 10.1016/j.rmr.2024.01.074.Peer-Reviewed Original ResearchCellular repertoireCell typesSingle cell platformsSequence readsCDNA libraryIllumina platformHuman genomeNucleus transcriptomicsCellular diversityIPF lungsPulmonary fibrosisEMT markersAirway epithelial cellsBasaloid cellsCellular populationsEpithelial cellsFibrotic fibroblastsCell platformLung slicesLung cell populationsHuman precision-cut lung slicesCell populationsSenescence markersCellsBasal markersIdentification of abnormal airway niches in the fibrotic lung using spatial transcriptomics
Justet A, Ravaglia C, Zhao A, Adams N, Agshin B, Kaminski N, Tomasseti S, Poletti V. Identification of abnormal airway niches in the fibrotic lung using spatial transcriptomics. Revue Des Maladies Respiratoires 2024, 41: 215. DOI: 10.1016/j.rmr.2024.01.068.Peer-Reviewed Original ResearchVascular endothelial cellsIPF patientsIPF lungsEpithelial cellsLung tissueEndothelial cellsCOVID patientsAirway epithelial cellsAbnormal cell populationsAlveolar epithelial cellsProgression to fibrosisLong COVIDBasaloid cellsControl patientsImmune cellsGene panelFFPE slidesFibrotic lungsProximal airwaysPatientsDistal lungLungBasal cellsCell populationsLong COVID patients
2022
From COVID to fibrosis: lessons from single-cell analyses of the human lung
Justet A, Zhao AY, Kaminski N. From COVID to fibrosis: lessons from single-cell analyses of the human lung. Human Genomics 2022, 16: 20. PMID: 35698166, PMCID: PMC9189802, DOI: 10.1186/s40246-022-00393-0.Peer-Reviewed Original ResearchConceptsSingle-cell RNA-sequencing technologySingle-cell RNA sequencingRNA-sequencing technologyGene expression patternsMonocyte-derived macrophage populationSingle-cell analysisCell populationsLung diseaseCellular phenotypesRNA sequencingExpression patternsGene expressionAberrant repairMultiple tissuesPulmonary fibrosisMechanisms of diseaseFibrotic interstitial lung diseaseLife-threatening complicationsProgressive lung diseaseCOVID-19 pneumoniaInterstitial lung diseaseParenchymal lung diseaseAcute viral diseaseMacrophage populationsNovel cell
2021
Cutting Edge: Distinct B Cell Repertoires Characterize Patients with Mild and Severe COVID-19
Hoehn KB, Ramanathan P, Unterman A, Sumida TS, Asashima H, Hafler DA, Kaminski N, Dela Cruz CS, Sealfon SC, Bukreyev A, Kleinstein SH. Cutting Edge: Distinct B Cell Repertoires Characterize Patients with Mild and Severe COVID-19. The Journal Of Immunology 2021, 206: 2785-2790. PMID: 34049971, PMCID: PMC8627528, DOI: 10.4049/jimmunol.2100135.Peer-Reviewed Original ResearchConceptsSevere COVID-19Mild COVID-19B cell responsesMemory B cellsB cell repertoireB cellsCell repertoireCOVID-19Cell responsesExtrafollicular B cell responsesLong-term immunitySymptomatic COVID-19Onset of symptomsB cell populationsGerminal center reactionProtective immunityPlasma cellsSingle-cell RNA sequencingCenter reactionPatientsCell populationsImmunityRNA sequencingCellsPostvaccination
2020
Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis
Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, Chu SG, Raby BA, DeIuliis G, Januszyk M, Duan Q, Arnett HA, Siddiqui A, Washko GR, Homer R, Yan X, Rosas IO, Kaminski N. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Science Advances 2020, 6: eaba1983. PMID: 32832599, PMCID: PMC7439502, DOI: 10.1126/sciadv.aba1983.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisVascular endothelial cellsIPF lungsPulmonary fibrosisChronic obstructive pulmonary disease (COPD) lungsFatal interstitial lung diseaseEndothelial cellsInterstitial lung diseaseCell populationsIPF myofibroblastsMyofibroblast fociNonsmoker controlsLung diseaseCOPD lungsBasaloid cellsSingle-cell atlasInvasive fibroblastsMacrophage populationsLungStromal cellsEpithelial cellsFibrosisCellular populationsDevelopmental markersSingle-cell RNA-seq
2019
Single-cell connectomic analysis of adult mammalian lungs
Raredon MSB, Adams TS, Suhail Y, Schupp JC, Poli S, Neumark N, Leiby KL, Greaney AM, Yuan Y, Horien C, Linderman G, Engler AJ, Boffa DJ, Kluger Y, Rosas IO, Levchenko A, Kaminski N, Niklason LE. Single-cell connectomic analysis of adult mammalian lungs. Science Advances 2019, 5: eaaw3851. PMID: 31840053, PMCID: PMC6892628, DOI: 10.1126/sciadv.aaw3851.Peer-Reviewed Original ResearchConceptsTissue homeostasisMammalian lungSingle-cell RNA sequencing techniquesAdult mammalian lungRNA sequencing techniquesCell-cell interactionsSequencing techniquesKey pathwaysAlveolar type IFunctional roleCell typesCell populationsRegenerative medicineHomeostatic mechanismsHomeostasisFine architectureFunctional lung tissueIncomplete understandingMajor roleType ITissueRegulationPathwayAlveolar cell populationsDistal lung
2018
Reconstructing differentiation networks and their regulation from time series single-cell expression data
Ding J, Aronow BJ, Kaminski N, Kitzmiller J, Whitsett JA, Bar-Joseph Z. Reconstructing differentiation networks and their regulation from time series single-cell expression data. Genome Research 2018, 28: 383-395. PMID: 29317474, PMCID: PMC5848617, DOI: 10.1101/gr.225979.117.Peer-Reviewed Original ResearchTranscription factorsSingle-cell expression dataSingle-cell RNA-seq dataRNA-seq dataDiverse cell populationsGene expression levelsDifferent cell typesStages of organogenesisCell fateDescendant cellsDifferentiation networkExpression similarityKey regulatorRegulatory informationExpression dataCell typesProgenitor cellsCell trajectoriesExpression levelsCell populationsDevelopmental dataCellsLineagesOrganogenesisRegulator
2006
Multiple Imprinted and Stemness Genes Provide a Link between Normal and Tumor Progenitor Cells of the Developing Human Kidney
Dekel B, Metsuyanim S, Schmidt-Ott KM, Fridman E, Jacob-Hirsch J, Simon A, Pinthus J, Mor Y, Barasch J, Amariglio N, Reisner Y, Kaminski N, Rechavi G. Multiple Imprinted and Stemness Genes Provide a Link between Normal and Tumor Progenitor Cells of the Developing Human Kidney. Cancer Research 2006, 66: 6040-6049. PMID: 16778176, DOI: 10.1158/0008-5472.can-05-4528.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsGene Expression ProfilingGenomic ImprintingHomeodomain ProteinsHumansKidneyKidney NeoplasmsMiceMice, Inbred BALB CMice, NudeMice, SCIDMultigene FamilyMyeloid Ecotropic Viral Integration Site 1 ProteinNeoplasm ProteinsNeoplasm TransplantationNeoplastic Stem CellsOligonucleotide Array Sequence AnalysisRatsTransplantation, HeterologousWilms TumorConceptsProgenitor cell populationsRenal progenitor cell populationStemness genesCell populationsNormal kidney developmentAdult mouse kidneyHomeobox genesMetanephric blastemaExpression of Peg3Transcriptional profilingOligonucleotide microarraysKidney developmentDifferentiated cellsCell differentiationHuman fetal kidneyTumor progenitor cellsGenesReal-time PCRMouse nephrogenesisBlastemaWT samplesProgenitor cellsStromal phenotypeWT sourcesPeg3