2024
A Monocyte-specific Gene-signature Predicts Outcomes in Patients With Idiopathic Pulmonary Fibrosis and Is Reproducible in Peripheral Blood, Bronchoalveolar Lavage, and Lung Tissue
Karampitsakos T, Tourki B, Juan-Guardela B, Perrot C, Marlin K, Arsenault A, Binder H, Wuyts W, Rottoli P, Prasse A, Tzouvelekis A, Restrepo Jaramillo R, Qureshi M, Patel K, Bandyopadhyay D, Kaminski N, Herazo-Maya J. A Monocyte-specific Gene-signature Predicts Outcomes in Patients With Idiopathic Pulmonary Fibrosis and Is Reproducible in Peripheral Blood, Bronchoalveolar Lavage, and Lung Tissue. 2024, a2860-a2860. DOI: 10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a2860.Peer-Reviewed Original Research
2022
Metagenomic sequencing of the bronchoalveolar lavage extracellular virome and cellular transcriptome of sarcoidosis patients does not detect rubella virus
Keeler E, Vukmirovic M, Yan X, Gulino K, Ghedin E, Kaminski N, Sullivan K, Bushman F, Collman R, Rosenbach M. Metagenomic sequencing of the bronchoalveolar lavage extracellular virome and cellular transcriptome of sarcoidosis patients does not detect rubella virus. Sarcoidosis, Vasculitis, And Diffuse Lung Diseases 2022, 39: e2022040. PMID: 36533601, PMCID: PMC9798337, DOI: 10.36141/svdld.v39i4.13407.Peer-Reviewed Original ResearchSarcoidosis patientsRubella virusBronchoalveolar lavageMultisystem granulomatous inflammatory diseaseImmune-competent patientsRubella virus infectionGranulomatous inflammatory diseaseCutaneous sarcoidosisAntigenic triggerBAL cellsUnclear etiologyRubella virus genomeInflammatory diseasesCutaneous granulomasGranulomatous lesionsVirus infectionVirus gene expressionLung samplesAcellular fluidCompetent patientsPatientsSarcoidosisOverlapping featuresMetagenomic sequencingVirus
2021
PINK1 mediates the protective effects of thyroid hormone T3 in hyperoxia-induced lung injury
Zhang Y, Yu G, Kaminski N, Lee P. PINK1 mediates the protective effects of thyroid hormone T3 in hyperoxia-induced lung injury. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2021, 320: l1118-l1125. PMID: 33851544, PMCID: PMC8285622, DOI: 10.1152/ajplung.00598.2020.Peer-Reviewed Original ResearchConceptsLung injuryWT miceThyroid hormonesBronchoalveolar lavageHyperoxia exposureBAL total cell countT3 pretreatmentAdult wild-type miceAdministration of PTULung cellular infiltratesAcute lung injuryWild-type miceNovel protective roleRespiratory failureCellular infiltrateThyroid hormone T3Total cell countHistological changesProtective effectPotential therapyProtective roleCell countCytoprotective effectsMitochondrial injuryHyperoxiaElevated IL-15 concentrations in the sarcoidosis lung are independent of granuloma burden and disease phenotypes
Minasyan M, Sharma L, Pivarnik T, Liu W, Adams T, Bermejo S, Peng X, Liu A, Ishikawa G, Perry C, Kaminski N, Gulati M, Herzog EL, Dela Cruz CS, Ryu C. Elevated IL-15 concentrations in the sarcoidosis lung are independent of granuloma burden and disease phenotypes. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2021, 320: l1137-l1146. PMID: 33851886, PMCID: PMC8285626, DOI: 10.1152/ajplung.00575.2020.Peer-Reviewed Original ResearchConceptsIL-15 concentrationsIL-15Bronchoalveolar lavageDisease pathogenesisSarcoidosis lungClinical manifestationsLineages of miceIL-15 receptor αHuman cohortsInflammation of sarcoidosisIL-15 levelsOngoing inflammatory processSystemic granulomatous diseaseNumber of granulomasDisease phenotypeSarcoidosis cohortTDM administrationGranuloma numberComorbid conditionsClinical progressionInterleukin-15Granulomatous diseaseInflammatory processGranuloma formationHealthy controls
2020
Gene coexpression networks reveal novel molecular endotypes in alpha-1 antitrypsin deficiency
Chu JH, Zang W, Vukmirovic M, Yan X, Adams T, DeIuliis G, Hu B, Mihaljinec A, Schupp JC, Becich MJ, Hochheiser H, Gibson KF, Chen ES, Morris A, Leader JK, Wisniewski SR, Zhang Y, Sciurba FC, Collman RG, Sandhaus R, Herzog EL, Patterson KC, Sauler M, Strange C, Kaminski N. Gene coexpression networks reveal novel molecular endotypes in alpha-1 antitrypsin deficiency. Thorax 2020, 76: 134-143. PMID: 33303696, PMCID: PMC10794043, DOI: 10.1136/thoraxjnl-2019-214301.Peer-Reviewed Original ResearchConceptsWeighted gene co-expression network analysisAlpha-1 antitrypsin deficiencyGene modulesGene co-expression network analysisDifferential gene expression analysisCo-expression network analysisPeripheral blood mononuclear cellsGene expression patternsPBMC gene expression patternsGene coexpression networksAATD individualsGene expression profilesGene expression analysisBronchoalveolar lavageAugmentation therapyClinical variablesAntitrypsin deficiencyGene expression assaysRNA-seqCoexpression networkGene validationExpression analysisExpression assaysWGCNA modulesExpression patterns
2017
Extracellular Mitochondrial DNA Is Generated by Fibroblasts and Predicts Death in Idiopathic Pulmonary Fibrosis
Ryu C, Sun H, Gulati M, Herazo-Maya J, Chen Y, Osafo-Addo A, Brandsdorfer C, Winkler J, Blaul C, Faunce J, Pan H, Woolard T, Tzouvelekis A, Antin-Ozerkis DE, Puchalski JT, Slade M, Gonzalez AL, Bogenhagen DF, Kirillov V, Feghali-Bostwick C, Gibson K, Lindell K, Herzog RI, Dela Cruz CS, Mehal W, Kaminski N, Herzog EL, Trujillo G. Extracellular Mitochondrial DNA Is Generated by Fibroblasts and Predicts Death in Idiopathic Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2017, 196: 1571-1581. PMID: 28783377, PMCID: PMC5754440, DOI: 10.1164/rccm.201612-2480oc.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisNormal human lung fibroblastsExtracellular mitochondrial DNABronchoalveolar lavageIPF fibroblastsPulmonary fibrosisInnate immune ligandsEvent-free survivalSmooth muscle actin expressionMtDNA concentrationsSmooth muscle actin-expressing myofibroblastsGrowth factor-β1Muscle actin expressionHuman lung fibroblastsTGF-β1 stimulationExtracellular mtDNAIPF cohortClinical outcomesControl subjectsDisease progressionGlycolytic reprogrammingSoluble mediatorsTGF-β1Factor-β1Immune ligands
2015
Rationale and Design of the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis Study. Alpha-1 Protocol
Strange C, Senior RM, Sciurba F, O’Neal S, Morris A, Wisniewski SR, Bowler R, Hochheiser HS, Becich MJ, Zhang Y, Leader JK, Methé BA, Kaminski N, Sandhaus RA, Group* F. Rationale and Design of the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis Study. Alpha-1 Protocol. Annals Of The American Thoracic Society 2015, 12: 1551-1560. PMID: 26153726, PMCID: PMC4627425, DOI: 10.1513/annalsats.201503-143oc.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAlpha 1-Antitrypsin DeficiencyBronchoalveolar LavageCross-Sectional StudiesExercise ToleranceFemaleGenomicsGenotypeHumansMaleMicrobiotaMiddle AgedPhenotypeProspective StudiesPulmonary Disease, Chronic ObstructivePulmonary EmphysemaResearch DesignRespiratory Function TestsSarcoidosisTomography, X-Ray ComputedConceptsAlpha-1 antitrypsin deficiencyAugmentation therapyBronchoalveolar lavageAntitrypsin deficiencyClinical presentationPiZZ individualsAlpha-1-antitrypsin augmentation therapyAlpha-1 antitrypsin genotypeChronic obstructive pulmonary disease phenotypesPulmonary function testingAge 35 yearsVariable clinical presentationCross-sectional studyAlpha-1 antitrypsinIntermediate outcome measuresPulmonary disease phenotypesUnique genetic causeExercise capacityTherapeutic trialsChest tomographyClinical symptomsCOPD pathogenesisCOPD phenotypesFunction testingCOPD StudyRationale and Design of the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) Study. Sarcoidosis Protocol
Moller DR, Koth LL, Maier LA, Morris A, Drake W, Rossman M, Leader JK, Collman RG, Hamzeh N, Sweiss NJ, Zhang Y, O’Neal S, Senior RM, Becich M, Hochheiser HS, Kaminski N, Wisniewski SR, Gibson KF, Group* F. Rationale and Design of the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) Study. Sarcoidosis Protocol. Annals Of The American Thoracic Society 2015, 12: 1561-1571. PMID: 26193069, PMCID: PMC4627423, DOI: 10.1513/annalsats.201503-172ot.Peer-Reviewed Original ResearchConceptsAlpha-1 antitrypsin deficiencyClinical courseLung microbiomeAntitrypsin deficiencyClinical heterogeneityPathobiology of sarcoidosisTremendous clinical heterogeneityObservational cohort studyPulmonary function testsSystemic inflammatory responsePeripheral blood changesDiagnosis of sarcoidosisSelf-administered questionnaireCohort studyBaseline visitBronchoalveolar lavageFunction testsGranulomatous inflammationSystemic diseaseSarcoidosis phenotypesUrine testingClinical bronchoscopyInflammatory responseSarcoidosis StudyPrognostic biomarker
2012
Matrix Metalloproteinase-19 Is a Key Regulator of Lung Fibrosis in Mice and Humans
Yu G, Kovkarova-Naumovski E, Jara P, Parwani A, Kass D, Ruiz V, Lopez-Otín C, Rosas IO, Gibson KF, Cabrera S, Ramírez R, Yousem SA, Richards TJ, Chensny LJ, Selman M, Kaminski N, Pardo A. Matrix Metalloproteinase-19 Is a Key Regulator of Lung Fibrosis in Mice and Humans. American Journal Of Respiratory And Critical Care Medicine 2012, 186: 752-762. PMID: 22859522, PMCID: PMC5450991, DOI: 10.1164/rccm.201202-0302oc.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBleomycinCells, CulturedCyclooxygenase 2Epithelial CellsGene Expression Regulation, EnzymologicHumansIdiopathic Pulmonary FibrosisLaser Capture MicrodissectionMatrix Metalloproteinases, SecretedMiceMice, KnockoutOligonucleotide Array Sequence AnalysisPulmonary AlveoliUp-RegulationConceptsIdiopathic pulmonary fibrosisHyperplastic epithelial cellsAlveolar epithelial cellsEpithelial cellsMMP-19IPF lungsWT miceLung fibrosisFibrotic responseHyperplastic alveolar epithelial cellsNovel mediatorLaser capture microscopeLung fibrotic responseDevelopment of fibrosisWild-type miceEpithelial phenotypic changesMatrix metalloproteinase-19Microarray analysisA549 epithelial cellsLung injuryBronchoalveolar lavagePulmonary fibrosisLung tissueSame lungFibrosis
2005
Up-Regulation and Profibrotic Role of Osteopontin in Human Idiopathic Pulmonary Fibrosis
Pardo A, Gibson K, Cisneros J, Richards TJ, Yang Y, Becerril C, Yousem S, Herrera I, Ruiz V, Selman M, Kaminski N. Up-Regulation and Profibrotic Role of Osteopontin in Human Idiopathic Pulmonary Fibrosis. PLOS Medicine 2005, 2: e251. PMID: 16128620, PMCID: PMC1198037, DOI: 10.1371/journal.pmed.0020251.Peer-Reviewed Original ResearchMeSH KeywordsBronchoalveolar Lavage FluidCell MovementCell ProliferationCells, CulturedEpithelial CellsExtracellular MatrixFemaleGene Expression ProfilingHumansLungMaleMatrix Metalloproteinase 1Matrix Metalloproteinase 7Middle AgedMolecular Sequence DataOsteopontinPulmonary FibrosisRecombinant ProteinsSialoglycoproteinsTissue Inhibitor of Metalloproteinase-1Up-RegulationConceptsIdiopathic pulmonary fibrosisAlveolar epithelial cellsIPF lungsMMP-7Pulmonary fibrosisEpithelial cellsHuman idiopathic pulmonary fibrosisHuman IPF lungsPrimary human lung fibroblastsMatrix metalloprotease-1 expressionMetalloprotease-1 expressionHuman lung fibroblastsIPF patientsBronchoalveolar lavageProfibrotic effectsProfibrotic roleNormal lungAlveolar epitheliumTissue inhibitorTherapeutic interventionsAnti-CD44Incurable diseaseLungMetalloprotease-1Lethal disorder