2020
A Physiological Basis for Nonheritable Antibiotic Resistance
Pontes MH, Groisman EA. A Physiological Basis for Nonheritable Antibiotic Resistance. MBio 2020, 11: 10.1128/mbio.00817-20. PMID: 32546621, PMCID: PMC7298711, DOI: 10.1128/mbio.00817-20.Peer-Reviewed Original ResearchConceptsNonheritable resistanceAntibiotic toleranceCore cellular processesAcquisition of genesToxin-antitoxin modulesExpression of genesSlow bacterial growthActivity of toxinsAbility of bacteriaBacterial genomesCellular processesNutrient limitationBacterial growthGuanosine tetraphosphateGenetic changesBacterial populationsFeedback inhibitionPhysiological basisGenesOrganismsSmall subpopulationBacteriostatic antibioticsAntibiotic resistanceGenomeTolerance
2018
Gene expression kinetics governs stimulus-specific decoration of the Salmonella outer membrane
Hong X, Chen HD, Groisman EA. Gene expression kinetics governs stimulus-specific decoration of the Salmonella outer membrane. Science Signaling 2018, 11 PMID: 29739882, PMCID: PMC5967240, DOI: 10.1126/scisignal.aar7921.Peer-Reviewed Original ResearchConceptsLipid A
2013
The Biology of the PmrA/PmrB Two-Component System: The Major Regulator of Lipopolysaccharide Modifications
Chen HD, Groisman EA. The Biology of the PmrA/PmrB Two-Component System: The Major Regulator of Lipopolysaccharide Modifications. Annual Review Of Microbiology 2013, 67: 83-112. PMID: 23799815, PMCID: PMC8381567, DOI: 10.1146/annurev-micro-092412-155751.Peer-Reviewed Original ResearchMeSH KeywordsAnti-Bacterial AgentsBacterial ProteinsGene Expression Regulation, BacterialLipopolysaccharidesSalmonella typhimuriumTranscription FactorsConceptsPmrA/PmrBTwo-component systemPmrA/PmrB systemMajor regulatorEnteric pathogen Salmonella entericaGene expression outputPathogen Salmonella entericaTranscriptional regulatorsExpression outputEcological nichesOuter membraneRelated bacteriaLPS modificationsExtent bacteriaLipopolysaccharide modificationDifferential survivalRegulatorHost immune systemNegative bacteriaSalmonella entericaBacteriaBiologyPmrBQuantitative differencesImmune system
2012
Reciprocal Control between a Bacterium's Regulatory System and the Modification Status of Its Lipopolysaccharide
Kato A, Chen HD, Latifi T, Groisman EA. Reciprocal Control between a Bacterium's Regulatory System and the Modification Status of Its Lipopolysaccharide. Molecular Cell 2012, 47: 897-908. PMID: 22921935, PMCID: PMC3465083, DOI: 10.1016/j.molcel.2012.07.017.Peer-Reviewed Original Research
2011
Ancestral Genes Can Control the Ability of Horizontally Acquired Loci to Confer New Traits
Chen HD, Jewett MW, Groisman EA. Ancestral Genes Can Control the Ability of Horizontally Acquired Loci to Confer New Traits. PLOS Genetics 2011, 7: e1002184. PMID: 21811415, PMCID: PMC3140997, DOI: 10.1371/journal.pgen.1002184.Peer-Reviewed Original ResearchMeSH KeywordsAnti-Bacterial AgentsBacterial ProteinsDNA, BacterialDrug Resistance, BacterialEscherichia coliEscherichia coli ProteinsGene Expression Regulation, BacterialGene Transfer, HorizontalKineticsMagnesiumMolecular Sequence DataPhosphorylationPolymyxin BReverse Transcriptase Polymerase Chain ReactionSalmonella typhimuriumSequence Analysis, DNATranscription FactorsTransformation, BacterialConceptsGene productsPmrD proteinPmrA/PmrB systemSpecies-specific traitsPmrA/PmrBE. coliHigh phosphatase activityBacterium Escherichia coliTwo-component systemPmrA proteinPolymyxin B resistanceAncestral locusAncestral proteinAncestral geneAncestral pathwayNew traitsBiochemical activityDifferent speciesGenesPmrB proteinEscherichia coliPhosphatase activityB resistanceProteinSalmonella enterica
2010
Orphan and hybrid two-component system proteins in health and disease
Raghavan V, Groisman EA. Orphan and hybrid two-component system proteins in health and disease. Current Opinion In Microbiology 2010, 13: 226-231. PMID: 20089442, PMCID: PMC2861427, DOI: 10.1016/j.mib.2009.12.010.Peer-Reviewed Original ResearchConceptsTwo-component systemResponse regulatorSensor kinaseTwo-component system proteinsGut symbiont Bacteroides thetaiotaomicronOpportunistic pathogen Pseudomonas aeruginosaResponse regulator domainCognate response regulatorPhosphorylation-independent mannerPathogen Pseudomonas aeruginosaRegulator domainEukaryotic hostsMembrane-bound regulatorsExpression programsExpression of enzymesPhosphorylated stateBiosynthetic enzymesStreptomyces speciesSingle polypeptideBacterial interactionsSystem proteinsBacteroides thetaiotaomicronEnzymatic propertiesRegulatorCertain sugars
2008
Evolution and Dynamics of Regulatory Architectures Controlling Polymyxin B Resistance in Enteric Bacteria
Mitrophanov AY, Jewett MW, Hadley TJ, Groisman EA. Evolution and Dynamics of Regulatory Architectures Controlling Polymyxin B Resistance in Enteric Bacteria. PLOS Genetics 2008, 4: e1000233. PMID: 18949034, PMCID: PMC2565834, DOI: 10.1371/journal.pgen.1000233.Peer-Reviewed Original ResearchConceptsRegulatory architectureComplex genetic networksDirect transcriptional controlEnteric bacteriaPolymyxin B resistanceEvolutionary historyTranscriptional controlGenetic networksRegulatory proteinsRegulatory pathwaysCellular responsesStructural modulesIndirect regulationRapid activationB resistanceExpression levelsMRNA expression levelsAntibiotic polymyxin BRegulation circuitBacteriaInducible resistanceFunctional propertiesProteinSystem postTransitional stage
2004
PhoP‐regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B
Shi Y, Cromie MJ, Hsu F, Turk J, Groisman EA. PhoP‐regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Molecular Microbiology 2004, 53: 229-241. PMID: 15225317, DOI: 10.1111/j.1365-2958.2004.04107.x.Peer-Reviewed Original Research
2000
A small protein that mediates the activation of a two‐component system by another two‐component system
Kox L, Wösten M, Groisman E. A small protein that mediates the activation of a two‐component system by another two‐component system. The EMBO Journal 2000, 19: 1861-1872. PMID: 10775270, PMCID: PMC302009, DOI: 10.1093/emboj/19.8.1861.Peer-Reviewed Original ResearchMeSH KeywordsAnti-Bacterial AgentsBacterial ProteinsBase SequenceDrug Resistance, MicrobialIronMagnesiumModels, BiologicalMolecular Sequence DataMutagenesisMutationPhosphorylationPlasmidsPolymyxinsProtein BindingRecombinant ProteinsRNA Processing, Post-TranscriptionalSalmonella entericaSignal TransductionSingle-Strand Specific DNA and RNA EndonucleasesTranscription FactorsTranscription, GeneticConceptsTwo-component systemTranscription of PmrAPost-transcriptional levelExpression of pmrAPeptide antibiotic polymyxin BPmrD proteinPhoP-PhoQTranscriptional activationGenetic basisHeterologous promoterPmrA-PmrBSmall proteinsGenesPhoP-PhoQ.PmrB proteinAntimicrobial proteinsPhoQ genesProteinPmrAPhoPTranscriptionSalmonella entericaAntibiotic polymyxin BPmrDHigh iron
1997
Regulation of polymyxin resistance and adaptation to low-Mg2+ environments
Groisman EA, Kayser J, Soncini FC. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. Journal Of Bacteriology 1997, 179: 7040-7045. PMID: 9371451, PMCID: PMC179645, DOI: 10.1128/jb.179.22.7040-7045.1997.Peer-Reviewed Original ResearchConceptsLPS modificationsAntimicrobial proteinsTranscription of PmrAPolymyxin resistanceWild-type organismsTwo-component systemExpression of pmrAAmino acid substitutionsPeptide antibiotic polymyxin BRegulatory proteinsPmrA-PmrBBacterial survivalAcid substitutionsMicromolar Mg2PmrAProteinHuman neutrophilsBacterial bindingGenesLociCationic polypeptidesAntibiotic polymyxin BOverall negative chargeSalmonella typhimuriumPhagocytic cellsThe Genetic Basis of Microbial Resistance to Antimicrobial Peptides
Groisman E, Aspedon A. The Genetic Basis of Microbial Resistance to Antimicrobial Peptides. Methods In Molecular Biology 1997, 78: 205-215. PMID: 9276306, DOI: 10.1385/0-89603-408-9:205.Peer-Reviewed Original ResearchConceptsSmall cationic peptidesAntimicrobial peptidesPathogen Salmonella typhimuriumDivergent organismsMillions of yearsMammalian hostsCationic peptidesGenetic basisAnimal hostsHost defense peptidesDiverse arrayHost tissuesInnate immunityVirulence propertiesDefense peptidesHostChemical barrierSalmonella typhimuriumMicroorganismsMicrobial resistanceS. typhimuriumPeptidesEnteric pathogensAntibiotic propertiesOpportunistic microorganisms
1996
The antibacterial action of protamine: evidence for disruption of cytoplasmic membrane energization in Salmonella typhimurium
Aspedon A, Groisman EA. The antibacterial action of protamine: evidence for disruption of cytoplasmic membrane energization in Salmonella typhimurium. Microbiology 1996, 142: 3389-3397. PMID: 9004502, DOI: 10.1099/13500872-142-12-3389.Peer-Reviewed Original ResearchConceptsCytoplasmic membraneNuclei of spermNutrient uptake functionsCellular ATP contentElectrical membrane potentialHigher delta psi valuesRespiring cellsLoss of viabilityMembrane energizationDifferent animal speciesProline uptakeProtein synthesisEnergy transductionMode of actionAnimal speciesUptake functionDelta psi valuesMembrane potentialCell lysisRapid effluxMechanism of actionPolycationic peptidesATP contentProtamineSalmonella typhimuriumBacterial responses to host-defense peptides
Groisman E. Bacterial responses to host-defense peptides. Trends In Microbiology 1996, 4: 127-128. PMID: 8728603, DOI: 10.1016/0966-842x(96)30013-9.Peer-Reviewed Original Research
1994
How bacteria resist killing by host-defense peptides
Groisman E. How bacteria resist killing by host-defense peptides. Trends In Microbiology 1994, 2: 444-449. PMID: 7866702, DOI: 10.1016/0966-842x(94)90802-8.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAnti-Bacterial AgentsBacteriaDrug Resistance, MicrobialImmunity, InnateMolecular Sequence DataPeptidesVirulence
1993
Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium.
Parra‐Lopez C, Baer MT, Groisman EA. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. The EMBO Journal 1993, 12: 4053-4062. PMID: 8223423, PMCID: PMC413698, DOI: 10.1002/j.1460-2075.1993.tb06089.x.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid SequenceAnti-Bacterial AgentsATP-Binding Cassette TransportersBase SequenceBiological TransportCloning, MolecularDrug Resistance, MicrobialEnterobacteriaceaeGenes, BacterialMelittenModels, BiologicalMolecular Sequence DataOperonPeptidesProtaminesSalmonella typhimuriumSequence Analysis, DNASequence Homology, Amino AcidConceptsUptake of oligopeptidesSet of genesOpen reading frameMolecular genetic analysisMammalian mdrYeast STE6Wild-type plasmidOperon structurePeriplasmic componentPeptide pheromoneNovel transporterReading frameKb segmentSalmonella typhimuriumGenetic analysisKb mRNASmall cationic peptidesSuccessful pathogenAntimicrobial peptide melittinSequence analysisCassette familyEnteric bacteriaPeptide transportAntimicrobial peptidesCancer cells
1992
Resistance to host antimicrobial peptides is necessary for Salmonella virulence.
Groisman EA, Parra-Lopez C, Salcedo M, Lipps CJ, Heffron F. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 11939-11943. PMID: 1465423, PMCID: PMC50673, DOI: 10.1073/pnas.89.24.11939.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Bacterial AgentsAntimicrobial Cationic PeptidesBiological EvolutionBlood ProteinsChromosome MappingCytoplasmic GranulesDefensinsGenes, BacterialGenotypeGranulocytesHumansIn Vitro TechniquesMagaininsMiceMutagenesisPeptidesProtaminesSalmonella InfectionsSalmonella typhimuriumXenopus ProteinsConceptsDifferent phenotypic classesTransposon insertion mutantsHost defense strategiesSalmonella virulence genesBacterium Salmonella typhimuriumResistance mechanismsAntimicrobial peptidesDefensin NP-1Antimicrobial peptide protamineInsertion mutantsResistance lociHost antimicrobial peptidesSalmonella virulencePhenotypic classesMutantsSuccessful pathogenDefective lipopolysaccharideAntibacterial peptidesVirulence genesPeptide mastoparanCecropin P1Defense strategiesUbiquitous typeVirulence propertiesGenes