2021
Limitation of phosphate assimilation maintains cytoplasmic magnesium homeostasis
Bruna RE, Kendra CG, Groisman EA, Pontes MH. Limitation of phosphate assimilation maintains cytoplasmic magnesium homeostasis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2021370118. PMID: 33707210, PMCID: PMC7980370, DOI: 10.1073/pnas.2021370118.Peer-Reviewed Original ResearchConceptsCytoplasmic MgPhosphate assimilationRibosomal RNARegulatory logicP assimilationMolecular basisLoss of viabilityProtein inhibitsPi toxicityAdenosine triphosphateATP synthesisProtein synthesisATP accumulationHomeostasisBacterial growthCytosolic PiDependent processesMagnesium homeostasisBacteriaBiological moleculesInorganic orthophosphateEssential componentAssimilationGrowthRNAReduced ATP-dependent proteolysis of functional proteins during nutrient limitation speeds the return of microbes to a growth state
Yeom J, Groisman EA. Reduced ATP-dependent proteolysis of functional proteins during nutrient limitation speeds the return of microbes to a growth state. Science Signaling 2021, 14 PMID: 33500334, PMCID: PMC8378506, DOI: 10.1126/scisignal.abc4235.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateATPases Associated with Diverse Cellular ActivitiesBacterial ProteinsCarbonMagnesiumNitrogenProteolysisSalmonella typhimuriumConceptsATP-dependent proteolysisSlow-growth stateFunctional proteinsGrowth stateATP-dependent proteaseTranscriptional regulator PhoPProtein preservationNutrient limitation conditionsRapid growth statesRegulator PhoPMicrobial strategiesNonfunctional proteinNutrient limitationProtein degradationNitrogen conditionsSame proteaseMagnesium starvationSerovar TyphimuriumProteinLimitation conditionsProteolysisIntracellular ATPParticular nutrientsStationary phaseIntracellular concentration
2020
A Physiological Basis for Nonheritable Antibiotic Resistance
Pontes MH, Groisman EA. A Physiological Basis for Nonheritable Antibiotic Resistance. MBio 2020, 11: 10.1128/mbio.00817-20. PMID: 32546621, PMCID: PMC7298711, DOI: 10.1128/mbio.00817-20.Peer-Reviewed Original ResearchConceptsNonheritable resistanceAntibiotic toleranceCore cellular processesAcquisition of genesToxin-antitoxin modulesExpression of genesSlow bacterial growthActivity of toxinsAbility of bacteriaBacterial genomesCellular processesNutrient limitationBacterial growthGuanosine tetraphosphateGenetic changesBacterial populationsFeedback inhibitionPhysiological basisGenesOrganismsSmall subpopulationBacteriostatic antibioticsAntibiotic resistanceGenomeTolerance
2018
A protein that controls the onset of a Salmonella virulence program
Yeom J, Pontes MH, Choi J, Groisman EA. A protein that controls the onset of a Salmonella virulence program. The EMBO Journal 2018, 37: embj201796977. PMID: 29858228, PMCID: PMC6043847, DOI: 10.15252/embj.201796977.Peer-Reviewed Original ResearchConceptsVirulence programBacterial inner membraneMaster virulence regulatorC-terminal domainHost tissuesAnti-virulence factorMgtC proteinInner membraneGenetic programVirulence regulatorConstitutive promoterGene transcriptionIntramacrophage survivalSame mRNAAntibiotic toleranceATP synthesisPathogen survivalGenesMetabolic adaptationCytoplasmic pHSerovar TyphimuriumPathogen persistenceVirulence genesProteinMechanism of action
2017
ATP-Dependent Persister Formation in Escherichia coli
Shan Y, Gandt A, Rowe S, Deisinger J, Conlon B, Lewis K, Zgurskaya H, Groisman E. ATP-Dependent Persister Formation in Escherichia coli. MBio 2017, 8: e02267-16. PMID: 28174313, PMCID: PMC5296605, DOI: 10.1128/mbio.02267-16.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateDrug ToleranceEscherichia coliGene Expression Regulation, BacterialMicrobial ViabilityConceptsChronic infectionFluorescence-activated cell sortingDrug toleranceATP levelsPersister formationDrug-tolerant persistersFluoroquinolone treatmentStress-induced activationSubpopulation of cellsLevels of ATPDormant variantsAntibiotic-tolerant cellsCellular ATP levelsBactericidal antibioticsDim cellsInfectionActivationPersister cellsAntibioticsCell sortingTreatmentSubpopulationsCellsActive toxinToxin activation
2016
Reducing Ribosome Biosynthesis Promotes Translation during Low Mg2+ Stress
Pontes MH, Yeom J, Groisman EA. Reducing Ribosome Biosynthesis Promotes Translation during Low Mg2+ Stress. Molecular Cell 2016, 64: 480-492. PMID: 27746019, PMCID: PMC5500012, DOI: 10.1016/j.molcel.2016.05.008.Peer-Reviewed Original ResearchConceptsSynthesis of ribosomesAmino acid abundanceExpression of proteinsPromotes TranslationAvailability of ATPRibosomal componentsRegulatory circuitsTranslational arrestCytosolic MgRRNA geneProtein synthesisRibosomesATP levelsLevels of ATPATP amountATPDivalent cationsMutantsTranscriptionNegative chargeGenesLow Mg2TranslationProteinAbundance
2015
When Too Much ATP Is Bad for Protein Synthesis
Pontes MH, Sevostyanova A, Groisman EA. When Too Much ATP Is Bad for Protein Synthesis. Journal Of Molecular Biology 2015, 427: 2586-2594. PMID: 26150063, PMCID: PMC4531837, DOI: 10.1016/j.jmb.2015.06.021.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateEnergy MetabolismEscherichia coliHumansMagnesiumProtein BiosynthesisRibosomesTranscription, GeneticConceptsProtein synthesisStructure of ribosomesEnergy-dependent activitiesATP levelsRibosome productionCellular processesTranslation initiationCytoplasmic membraneEssential enzymeCellular ATPEnergy currencyLiving cellsATPCellsDivalent cationsCrucial roleTriphosphateRibosomesAminoacylationOrganismsNon-physiological increaseCofactorEnzymeBiochemistryCommon divalent cationsSalmonella promotes virulence by repressing cellulose production
Pontes MH, Lee EJ, Choi J, Groisman EA. Salmonella promotes virulence by repressing cellulose production. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 5183-5188. PMID: 25848006, PMCID: PMC4413311, DOI: 10.1073/pnas.1500989112.Peer-Reviewed Original ResearchConceptsCellulose synthesisWild-type phenotypeWild-type virulenceSalmonella enterica serovar TyphimuriumCyclic diguanylateEnterica serovar TyphimuriumPathogen fitnessAbundant organic polymerMgtC geneAcute virulenceAllosteric activatorAbiotic surfacesMgtC mutantInside macrophagesMutantsVirulence determinantsSerovar TyphimuriumVirulenceCellulose productionEnvironmental insultsCellulose levelsBCSAAttenuated mutantsTraitsDiguanylate
2013
A Bacterial Virulence Protein Promotes Pathogenicity by Inhibiting the Bacterium’s Own F1Fo ATP Synthase
Lee EJ, Pontes MH, Groisman EA. A Bacterial Virulence Protein Promotes Pathogenicity by Inhibiting the Bacterium’s Own F1Fo ATP Synthase. Cell 2013, 154: 146-156. PMID: 23827679, PMCID: PMC3736803, DOI: 10.1016/j.cell.2013.06.004.Peer-Reviewed Original Research
2012
Tandem attenuators control expression of the Salmonella mgtCBR virulence operon
Lee EJ, Groisman EA. Tandem attenuators control expression of the Salmonella mgtCBR virulence operon. Molecular Microbiology 2012, 86: 212-224. PMID: 22857388, PMCID: PMC3641672, DOI: 10.1111/j.1365-2958.2012.08188.x.Peer-Reviewed Original ResearchControl of a Salmonella virulence locus by an ATP-sensing leader messenger RNA
Lee EJ, Groisman EA. Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA. Nature 2012, 486: 271-275. PMID: 22699622, PMCID: PMC3711680, DOI: 10.1038/nature11090.Peer-Reviewed Original ResearchMeSH Keywords5' Untranslated RegionsAdenosine TriphosphateAnimalsBacterial ProteinsBase SequenceCation Transport ProteinsFemaleGene Expression Regulation, BacterialHydrogen-Ion ConcentrationMacrophagesMiceMice, Inbred C3HMolecular Sequence DataMutationSalmonella InfectionsSalmonella typhimuriumSequence AlignmentVirulenceIntrinsic Negative Feedback Governs Activation Surge in Two-Component Regulatory Systems
Yeo WS, Zwir I, Huang HV, Shin D, Kato A, Groisman EA. Intrinsic Negative Feedback Governs Activation Surge in Two-Component Regulatory Systems. Molecular Cell 2012, 45: 409-421. PMID: 22325356, PMCID: PMC3713471, DOI: 10.1016/j.molcel.2011.12.027.Peer-Reviewed Original Research
1996
The antibacterial action of protamine: evidence for disruption of cytoplasmic membrane energization in Salmonella typhimurium
Aspedon A, Groisman EA. The antibacterial action of protamine: evidence for disruption of cytoplasmic membrane energization in Salmonella typhimurium. Microbiology 1996, 142: 3389-3397. PMID: 9004502, DOI: 10.1099/13500872-142-12-3389.Peer-Reviewed Original ResearchConceptsCytoplasmic membraneNuclei of spermNutrient uptake functionsCellular ATP contentElectrical membrane potentialHigher delta psi valuesRespiring cellsLoss of viabilityMembrane energizationDifferent animal speciesProline uptakeProtein synthesisEnergy transductionMode of actionAnimal speciesUptake functionDelta psi valuesMembrane potentialCell lysisRapid effluxMechanism of actionPolycationic peptidesATP contentProtamineSalmonella typhimurium
1993
Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium.
Parra‐Lopez C, Baer MT, Groisman EA. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. The EMBO Journal 1993, 12: 4053-4062. PMID: 8223423, PMCID: PMC413698, DOI: 10.1002/j.1460-2075.1993.tb06089.x.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid SequenceAnti-Bacterial AgentsATP-Binding Cassette TransportersBase SequenceBiological TransportCloning, MolecularDrug Resistance, MicrobialEnterobacteriaceaeGenes, BacterialMelittenModels, BiologicalMolecular Sequence DataOperonPeptidesProtaminesSalmonella typhimuriumSequence Analysis, DNASequence Homology, Amino AcidConceptsUptake of oligopeptidesSet of genesOpen reading frameMolecular genetic analysisMammalian mdrYeast STE6Wild-type plasmidOperon structurePeriplasmic componentPeptide pheromoneNovel transporterReading frameKb segmentSalmonella typhimuriumGenetic analysisKb mRNASmall cationic peptidesSuccessful pathogenAntimicrobial peptide melittinSequence analysisCassette familyEnteric bacteriaPeptide transportAntimicrobial peptidesCancer cells