2024
Chaperone Hsp70 helps Salmonella survive infection-relevant stress by reducing protein synthesis
Chan C, Groisman E. Chaperone Hsp70 helps Salmonella survive infection-relevant stress by reducing protein synthesis. PLOS Biology 2024, 22: e3002560. PMID: 38574172, PMCID: PMC10994381, DOI: 10.1371/journal.pbio.3002560.Peer-Reviewed Original ResearchConceptsRibosome associationProtein synthesisProtein homeostasisS. typhimuriumProtein folding capacityPreventing protein aggregationC-terminal amino acidsDomains of lifeProtein synthesis in vitroInhibit protein synthesisFolding capacityHsp70 chaperonesJ-domainSynthesis in vitroProtein foldingReduction of protein synthesisChaperone Hsp70DnaKRibosomeProtein aggregationChaperoneAmino acidsProteinStarvationHSP70
2023
Advancing evolution: Bacteria break down gene silencer to express horizontally acquired genes
Groisman E, Choi J. Advancing evolution: Bacteria break down gene silencer to express horizontally acquired genes. BioEssays 2023, 45: e2300062. PMID: 37533411, PMCID: PMC10530229, DOI: 10.1002/bies.202300062.Peer-Reviewed Original ResearchConceptsH-NSAT-rich DNAHeat-stable nucleoid-structuring (H-NS) proteinConserved amino acid sequencesNucleoid structuring proteinHorizontal gene transferAmino acid sequenceSalmonella enterica serovar TyphimuriumBacterial evolutionLon proteaseProtease LonDiverse bacteriaEnterica serovar TyphimuriumRNA polymeraseAlternative promotersAcid sequenceStructuring proteinGene silencersGenesCleavage siteEnteric bacteriaEscherichia coliGene transferCommensal Escherichia coliSerovar TyphimuriumHow Bacterial Pathogens Coordinate Appetite with Virulence
Pokorzynski N, Groisman E. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiology And Molecular Biology Reviews 2023, 87: e00198-22. PMID: 37358444, PMCID: PMC10521370, DOI: 10.1128/mmbr.00198-22.Peer-Reviewed Original ResearchConceptsVirulence factorsTyphoid-like diseaseIntestinal inflammationFacultative intracellular pathogenImmunocompetent humansGut microbiotaPathogenic outcomesUtilization determinantsIntracellular pathogensSpecific nutrientsAntimicrobial agentsInfectionBacterial pathogensSerovar TyphimuriumBacterial virulencePathogensPathogenic traitsAnimal hostsPathwaySuch pathwaysCertain pathwaysMetabolic pathwaysVirulence programInflammationVirulence
2021
The regulation of DNA supercoiling across evolution
Duprey A, Groisman EA. The regulation of DNA supercoiling across evolution. Protein Science 2021, 30: 2042-2056. PMID: 34398513, PMCID: PMC8442966, DOI: 10.1002/pro.4171.Peer-Reviewed Original ResearchConceptsDomains of lifeDNA supercoilingCellular processesAbnormal DNA replicationCertain cellular processesActivity of topoisomerasesChromosome replicationGlobal supercoilingNegative supercoilsDNA replicationBiological questionsSupercoilingEukaryotic topoisomerasesTopoisomerasesSupercoilsSignificant therapeutic potentialOrganismsHelix structureBacteriaPhysicochemical factorsRegulationDouble helix structureReplicationUnique strategyArchaea
2020
A Physiological Basis for Nonheritable Antibiotic Resistance
Pontes MH, Groisman EA. A Physiological Basis for Nonheritable Antibiotic Resistance. MBio 2020, 11: 10.1128/mbio.00817-20. PMID: 32546621, PMCID: PMC7298711, DOI: 10.1128/mbio.00817-20.Peer-Reviewed Original ResearchConceptsNonheritable resistanceAntibiotic toleranceCore cellular processesAcquisition of genesToxin-antitoxin modulesExpression of genesSlow bacterial growthActivity of toxinsAbility of bacteriaBacterial genomesCellular processesNutrient limitationBacterial growthGuanosine tetraphosphateGenetic changesBacterial populationsFeedback inhibitionPhysiological basisGenesOrganismsSmall subpopulationBacteriostatic antibioticsAntibiotic resistanceGenomeTolerance
2016
Feedback Control of Two-Component Regulatory Systems
Groisman EA. Feedback Control of Two-Component Regulatory Systems. Annual Review Of Microbiology 2016, 70: 103-124. PMID: 27607549, PMCID: PMC8380452, DOI: 10.1146/annurev-micro-102215-095331.Peer-Reviewed Original ResearchLearning from the Leaders: Gene Regulation by the Transcription Termination Factor Rho
Kriner MA, Sevostyanova A, Groisman EA. Learning from the Leaders: Gene Regulation by the Transcription Termination Factor Rho. Trends In Biochemical Sciences 2016, 41: 690-699. PMID: 27325240, PMCID: PMC4967001, DOI: 10.1016/j.tibs.2016.05.012.Peer-Reviewed Original ResearchMeSH KeywordsBacteriaGene Expression RegulationRho FactorRNA, BacterialTranscription Termination, GeneticConceptsRho-dependent terminatorsLeader regionTranscription termination factor RhoTranscription elongation complexTermination factor RhoTranscription termination eventsTranscription of genesRho-dependent terminationRho loading siteElongation complexGene regulationCellular translationBacterial mRNAsRegulatory inputsPhysiological functionsProtein synthesisTermination eventsNovel mechanismTarget specificityMultistep natureRhoLoading siteMultiple signalsTerminatorRecent studies
2013
Bacterial Mg2+ Homeostasis, Transport, and Virulence
Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH. Bacterial Mg2+ Homeostasis, Transport, and Virulence. Annual Review Of Genetics 2013, 47: 625-646. PMID: 24079267, PMCID: PMC4059682, DOI: 10.1146/annurev-genet-051313-051025.Peer-Reviewed Original Research
2009
Response Acceleration in Post-translationally Regulated Genetic Circuits
Mitrophanov AY, Groisman EA. Response Acceleration in Post-translationally Regulated Genetic Circuits. Journal Of Molecular Biology 2009, 396: 1398-1409. PMID: 19932119, PMCID: PMC2861412, DOI: 10.1016/j.jmb.2009.11.043.Peer-Reviewed Original ResearchConceptsRegulatory proteinsTwo-component system familyBacterial signal transductionGenetic regulatory circuitsTwo-component systemSteady-state output levelGenetic circuitsRegulatory circuitsSignal transductionSensor proteinsTranscription factorsGene expressionLiving cellsPhosphorylation levelsProteinSpecific signalsKinetic propertiesSuch modificationsCellsTransductionPhosphorylationRegulatorMechanismPrevalent formExpressionEvolution of Transcriptional Regulatory Circuits in Bacteria
Perez JC, Groisman EA. Evolution of Transcriptional Regulatory Circuits in Bacteria. Cell 2009, 138: 233-244. PMID: 19632175, PMCID: PMC2726713, DOI: 10.1016/j.cell.2009.07.002.Peer-Reviewed Original ResearchConceptsTranscription factorsRegulatory circuitsOrthologous transcription factorsBacterial regulatory circuitsAncestral transcription factorTranscriptional regulatory circuitsDistinct gene setsHorizontal gene transferSpecies-specific genesEukaryotic speciesPromoter structureRelated organismsGene setsRegulatory differencesGene transferGenesCircuit evolutionBacteriaOrganismsRewiringSpeciesDivergenceEvolutionExpressionCuesTranscription factor function and promoter architecture govern the evolution of bacterial regulons
Perez JC, Groisman EA. Transcription factor function and promoter architecture govern the evolution of bacterial regulons. Proceedings Of The National Academy Of Sciences Of The United States Of America 2009, 106: 4319-4324. PMID: 19251636, PMCID: PMC2649204, DOI: 10.1073/pnas.0810343106.Peer-Reviewed Original ResearchConceptsRegulatory circuitsBacterial regulonsPhoP proteinRegulatory protein PhoPBacterial transcription factorsTranscription factor functionCis-regulatory elementsGene regulatory circuitsHorizontal gene transferPathogen Salmonella entericaPromoter architectureEvolutionary changeRelated organismsVirulence regulatorTranscription factorsRegulonPhenotypic differencesFactor functionGene transferYersinia pestisSalmonella entericaCore membersProteinEukaryotesPhoP
2008
Signal integration in bacterial two-component regulatory systems
Mitrophanov AY, Groisman EA. Signal integration in bacterial two-component regulatory systems. Genes & Development 2008, 22: 2601-2611. PMID: 18832064, PMCID: PMC2751022, DOI: 10.1101/gad.1700308.Peer-Reviewed Original ResearchConceptsTwo-component systemResponse regulatorTwo-component regulatory systemSignal integrationBacterial signal transductionGram-negative bacteriaCellular processesSignal transductionPhosphorylated statePhosphorylation statePhysiological functionsSpecific functionsRegulatory systemBiochemical reactionsKey mediatorRegulatorPhosphorelayAntibiotic resistanceDifferent mechanismsSporulationTransductionStationary phaseDNABacteriaGramPositive feedback in cellular control systems
Mitrophanov AY, Groisman EA. Positive feedback in cellular control systems. BioEssays 2008, 30: 542-555. PMID: 18478531, PMCID: PMC2486260, DOI: 10.1002/bies.20769.Peer-Reviewed Original Research
2007
The intricate world of riboswitches
Coppins RL, Hall KB, Groisman EA. The intricate world of riboswitches. Current Opinion In Microbiology 2007, 10: 176-181. PMID: 17383225, PMCID: PMC1894890, DOI: 10.1016/j.mib.2007.03.006.Peer-Reviewed Original Research
2005
The origin and evolution of human pathogens
Groisman EA, Casadesús J. The origin and evolution of human pathogens. Molecular Microbiology 2005, 56: 1-7. PMID: 15773974, DOI: 10.1111/j.1365-2958.2005.04564.x.Peer-Reviewed Original ResearchConceptsCreation of genesNon-host environmentsHuman pathogensRelated bacterial speciesCertain pathogensORFan genesHomologous genesCell surface modificationExpression of productsHousekeeping functionsRelated membersHost rangeColonization processTissue specificityPathogenicity islandSequence databasesCertain lociBacterial speciesGenesCell surfaceDisparate regulationGenetic originBacterial pathogensNew functionsGene variation
2003
Genomics A global view of gene gain, loss, regulation and function
Groisman EA, Ehrlich SD. Genomics A global view of gene gain, loss, regulation and function. Current Opinion In Microbiology 2003, 6: 479-481. PMID: 14572540, DOI: 10.1016/j.mib.2003.09.010.Peer-Reviewed Original ResearchMaking informed decisions: regulatory interactions between two-component systems
Bijlsma JJ, Groisman EA. Making informed decisions: regulatory interactions between two-component systems. Trends In Microbiology 2003, 11: 359-366. PMID: 12915093, DOI: 10.1016/s0966-842x(03)00176-8.Peer-Reviewed Original ResearchConceptsTwo-component systemTwo-component regulatory systemPost-transcriptional mechanismsMultitude of stressesResponse regulatorBacterial adaptationRegulatory interactionsComplex nichePhosphoryl transferMolecular levelRegulatory systemSpecific signalsMultiple signalsPhosphorelayMultifaceted environmentNicheRegulatorBacteriaPhosphataseMechanismStressAdaptation
2000
Lateral gene transfer and the nature of bacterial innovation
Ochman H, Lawrence J, Groisman E. Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405: 299-304. PMID: 10830951, DOI: 10.1038/35012500.Peer-Reviewed Original ResearchConceptsLateral gene transferGene transferHorizontal gene transferBacterial innovationDynamic genomeGenetic diversityAcquisition of sequencesGenetic informationLateral transferBacterial speciesPathogenic characterEukaryotesGenomeChromosomesOrganismsSpeciesDNADiversityBacteriaSequenceSubstantial amount
1994
How bacteria resist killing by host-defense peptides
Groisman E. How bacteria resist killing by host-defense peptides. Trends In Microbiology 1994, 2: 444-449. PMID: 7866702, DOI: 10.1016/0966-842x(94)90802-8.Peer-Reviewed Original Research