2021
RNA chaperone activates Salmonella virulence program during infection
Choi J, Salvail H, Groisman EA. RNA chaperone activates Salmonella virulence program during infection. Nucleic Acids Research 2021, 49: 11614-11628. PMID: 34751407, PMCID: PMC8599858, DOI: 10.1093/nar/gkab992.Peer-Reviewed Original ResearchConceptsPhoP activationVirulence regulator PhoPWild-type virulenceBacterium Salmonella enterica serovar TyphimuriumWild-type S. typhimuriumSalmonella enterica serovar TyphimuriumRNA chaperonesEnterica serovar TyphimuriumRegulator PhoPRedundant proteinsMutant behavesVirulence programVirulence roleS. typhimuriumInside macrophagesSecondary structureSerovar TyphimuriumCritical functionsVirulence genesChaperonesPhoPMutantsRibosomesOrganismsCSPCThe regulation of DNA supercoiling across evolution
Duprey A, Groisman EA. The regulation of DNA supercoiling across evolution. Protein Science 2021, 30: 2042-2056. PMID: 34398513, PMCID: PMC8442966, DOI: 10.1002/pro.4171.Peer-Reviewed Original ResearchConceptsDomains of lifeDNA supercoilingCellular processesAbnormal DNA replicationCertain cellular processesActivity of topoisomerasesChromosome replicationGlobal supercoilingNegative supercoilsDNA replicationBiological questionsSupercoilingEukaryotic topoisomerasesTopoisomerasesSupercoilsSignificant therapeutic potentialOrganismsHelix structureBacteriaPhysicochemical factorsRegulationDouble helix structureReplicationUnique strategyArchaea
2020
How Pathogens Feel and Overcome Magnesium Limitation When in Host Tissues
Blanc-Potard AB, Groisman EA. How Pathogens Feel and Overcome Magnesium Limitation When in Host Tissues. Trends In Microbiology 2020, 29: 98-106. PMID: 32807623, PMCID: PMC7855738, DOI: 10.1016/j.tim.2020.07.003.Peer-Reviewed Original ResearchConceptsNutritional immunityHost cell compartmentsAbundant divalent cationHost tissuesSalmonella enterica serovar TyphimuriumAvailability of nutrientsPathogen responseEnterica serovar TyphimuriumMacrophage proteinHost organismLiving cellsMagnesium limitationAmino acidsIntracellular pathogensSerovar TyphimuriumNutrient concentrationsCell compartmentPathogensDivalent cationsNutrientsMagnesium deprivationEssentialityOrganismsCytoplasmProteinA Physiological Basis for Nonheritable Antibiotic Resistance
Pontes MH, Groisman EA. A Physiological Basis for Nonheritable Antibiotic Resistance. MBio 2020, 11: 10.1128/mbio.00817-20. PMID: 32546621, PMCID: PMC7298711, DOI: 10.1128/mbio.00817-20.Peer-Reviewed Original ResearchConceptsNonheritable resistanceAntibiotic toleranceCore cellular processesAcquisition of genesToxin-antitoxin modulesExpression of genesSlow bacterial growthActivity of toxinsAbility of bacteriaBacterial genomesCellular processesNutrient limitationBacterial growthGuanosine tetraphosphateGenetic changesBacterial populationsFeedback inhibitionPhysiological basisGenesOrganismsSmall subpopulationBacteriostatic antibioticsAntibiotic resistanceGenomeTolerance
2015
When Too Much ATP Is Bad for Protein Synthesis
Pontes MH, Sevostyanova A, Groisman EA. When Too Much ATP Is Bad for Protein Synthesis. Journal Of Molecular Biology 2015, 427: 2586-2594. PMID: 26150063, PMCID: PMC4531837, DOI: 10.1016/j.jmb.2015.06.021.Peer-Reviewed Original ResearchConceptsProtein synthesisStructure of ribosomesEnergy-dependent activitiesATP levelsRibosome productionCellular processesTranslation initiationCytoplasmic membraneEssential enzymeCellular ATPEnergy currencyLiving cellsATPCellsDivalent cationsCrucial roleTriphosphateRibosomesAminoacylationOrganismsNon-physiological increaseCofactorEnzymeBiochemistryCommon divalent cations
2012
The Impact of Differential Regulation on Bacterial Speciation
Groisman E. The Impact of Differential Regulation on Bacterial Speciation. 2012, 109-114. DOI: 10.1128/9781555818470.ch15.Peer-Reviewed Original ResearchBacterial speciesGene regulatory strategiesRelated bacterial speciesResistance proteinAmino acid sequenceEukaryotic speciesRelated speciesBacterial speciationRelated organismsIndividual speciesRegulatory proteinsAcid sequenceBacterial behaviorEnteric speciesGenetic differencesGenetic scenariosDifferential regulationResistance genesEscherichia coliSpeciesEconomic importanceProteinSalmonella entericaFamily EnterobacteriaceaeOrganisms
2009
Short-Term Signatures of Evolutionary Change in the Salmonella enterica Serovar Typhimurium 14028 Genome
Jarvik T, Smillie C, Groisman EA, Ochman H. Short-Term Signatures of Evolutionary Change in the Salmonella enterica Serovar Typhimurium 14028 Genome. Journal Of Bacteriology 2009, 192: 560-567. PMID: 19897643, PMCID: PMC2805332, DOI: 10.1128/jb.01233-09.Peer-Reviewed Original ResearchConceptsComplete genomic sequenceGenomic sequencesSalmonella enterica serovar TyphimuriumTyphoid-like diseaseEnterica serovar TyphimuriumEvolutionary changeSequence evolutionGram-negative pathogensS. typhimuriumSerovar TyphimuriumComplete inventoryGenetic alterationsAvirulent strainsS. entericaPathogenic organismsSequenceLaboratory passageS. typhimurium strainTyphimuriumGenomeStrainsTyphimurium strainsLT2 strainOrganismsProgenitorsEvolution of Transcriptional Regulatory Circuits in Bacteria
Perez JC, Groisman EA. Evolution of Transcriptional Regulatory Circuits in Bacteria. Cell 2009, 138: 233-244. PMID: 19632175, PMCID: PMC2726713, DOI: 10.1016/j.cell.2009.07.002.Peer-Reviewed Original ResearchConceptsTranscription factorsRegulatory circuitsOrthologous transcription factorsBacterial regulatory circuitsAncestral transcription factorTranscriptional regulatory circuitsDistinct gene setsHorizontal gene transferSpecies-specific genesEukaryotic speciesPromoter structureRelated organismsGene setsRegulatory differencesGene transferGenesCircuit evolutionBacteriaOrganismsRewiringSpeciesDivergenceEvolutionExpressionCues
2007
A connector of two-component regulatory systems promotes signal amplification and persistence of expression
Kato A, Mitrophanov AY, Groisman EA. A connector of two-component regulatory systems promotes signal amplification and persistence of expression. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 12063-12068. PMID: 17615238, PMCID: PMC1924540, DOI: 10.1073/pnas.0704462104.Peer-Reviewed Original ResearchConceptsTwo-component regulatory systemBacterial signal transductionRegulatory systemPersistence of expressionSignal transductionGene transcriptionRegulatory architectureSmall proteinsSalmonella entericaPathwayFunctional characteristicsPmrDExpressionFunctional propertiesPhoP.AmplificationTranscriptionSignal amplificationTransductionGenesDominant formOrganismsProteinPersistenceEnterica
2000
A Signal Transduction System that Responds to Extracellular Iron
Wösten M, Kox L, Chamnongpol S, Soncini F, Groisman E. A Signal Transduction System that Responds to Extracellular Iron. Cell 2000, 103: 113-125. PMID: 11051552, DOI: 10.1016/s0092-8674(00)00092-1.Peer-Reviewed Original ResearchMeSH KeywordsBacterial ProteinsBinding SitesCarrier ProteinsDrug Resistance, MicrobialExtracellular SpaceGene Expression Regulation, BacterialIronIron-Binding ProteinsPhenotypePolymyxinsProtein Structure, TertiarySalmonella entericaSignal TransductionTranscription FactorsTranscription, GeneticTransferrin-Binding ProteinsConceptsSignal transduction systemTransduction systemTranscription of PmrAWild-type resistancePmrA/PmrBPeriplasmic domainPmrA mutantIron transporterFerritin light chainIron binding proteinAntibiotic polymyxinBinding proteinPmrB proteinIron homeostasisNovel pathwayExtracellular ironIron toxicityProteinVariety of oxidantsLight chainMutantsTranscriptionGenesOrganismsFerric ironLateral gene transfer and the nature of bacterial innovation
Ochman H, Lawrence J, Groisman E. Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405: 299-304. PMID: 10830951, DOI: 10.1038/35012500.Peer-Reviewed Original ResearchConceptsLateral gene transferGene transferHorizontal gene transferBacterial innovationDynamic genomeGenetic diversityAcquisition of sequencesGenetic informationLateral transferBacterial speciesPathogenic characterEukaryotesGenomeChromosomesOrganismsSpeciesDNADiversityBacteriaSequenceSubstantial amount
1991
Genome mapping and protein coding region identification using bacteriophage Mu
Groisman E, Pagratis N, Casadaban M. Genome mapping and protein coding region identification using bacteriophage Mu. Gene 1991, 99: 1-7. PMID: 1827084, DOI: 10.1016/0378-1119(91)90026-8.Peer-Reviewed Original ResearchConceptsMu-like phagesT7 RNA polymeraseEscherichia coli KRecombinant DNA technologySpecialized promotersBacterial genesGenome mappingRNA polymeraseBacteriophage T7Coli KHost translationBacteriophage MuMu phageDNA technologyMu vectorTransposonGenesPhagesPseudomonas aeruginosaChromosomesTranscriptionPolymerasePromoterOrganismsProtein