2023
The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans
Luukkonen P, Porthan K, Ahlholm N, Rosqvist F, Dufour S, Zhang X, Lehtimäki T, Seppänen W, Orho-Melander M, Hodson L, Petersen K, Shulman G, Yki-Järvinen H. The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans. Cell Metabolism 2023, 35: 1887-1896.e5. PMID: 37909034, DOI: 10.1016/j.cmet.2023.10.008.Peer-Reviewed Original ResearchConceptsDe novo lipogenesisHepatic de novo lipogenesisPlasma β-hydroxybutyrate concentrationsΒ-hydroxybutyrate concentrationsLiver diseaseNovo lipogenesisPNPLA3 I148M variantHepatic mitochondrial redox stateMajor genetic risk factorI148M variantFatty liver diseaseGenetic risk factorsHepatic mitochondrial dysfunctionKetogenic dietMixed mealRisk factorsHepatic metabolismHomozygous carriersM carriersMitochondrial dysfunctionCitrate synthase fluxM variantKetogenesisMitochondrial redox stateMitochondrial functionHepatocyte CYR61 polarizes profibrotic macrophages to orchestrate NASH fibrosis
Mooring M, Yeung G, Luukkonen P, Liu S, Akbar M, Zhang G, Balogun O, Yu X, Mo R, Nejak-Bowen K, Poyurovsky M, Booth C, Konnikova L, Shulman G, Yimlamai D. Hepatocyte CYR61 polarizes profibrotic macrophages to orchestrate NASH fibrosis. Science Translational Medicine 2023, 15: eade3157. PMID: 37756381, PMCID: PMC10874639, DOI: 10.1126/scitranslmed.ade3157.Peer-Reviewed Original ResearchConceptsNonalcoholic steatohepatitisLiver inflammationNonalcoholic fatty liver diseaseProgression of NASHCysteine-rich angiogenic inducer 61Fatty liver diseaseLiver-specific knockout miceImproved glucose toleranceType 2 diabetesGlucose toleranceLiver diseaseNASH progressionProfibrotic macrophagesProinflammatory propertiesReduced fibrosisCardiovascular diseaseProfibrotic phenotypeFibrotic developmentKnockout miceNF-κBMetabolic diseasesNASH dietPDGFB expressionFibrosisProfibrotic programMAD2-Dependent Insulin Receptor Endocytosis Regulates Metabolic Homeostasis.
Park J, Hall C, Hubbard B, LaMoia T, Gaspar R, Nasiri A, Li F, Zhang H, Kim J, Haeusler R, Accili D, Shulman G, Yu H, Choi E. MAD2-Dependent Insulin Receptor Endocytosis Regulates Metabolic Homeostasis. Diabetes 2023, 72: 1781-1794. PMID: 37725942, PMCID: PMC10658066, DOI: 10.2337/db23-0314.Peer-Reviewed Original ResearchConceptsIR endocytosisInsulin receptor endocytosisCell division regulatorsInsulin receptorProlongs insulin actionReceptor endocytosisTranscriptomic profilesInsulin stimulationEndocytosisMetabolic homeostasisCell surfaceGenetic ablationMetabolic functionsInsulin actionP31cometMad2BubR1DisruptionSignalingRegulatorHomeostasisAdipose tissueInteractionHepatic fat accumulationMetabolismInhibition of HSD17B13 protects against liver fibrosis by inhibition of pyrimidine catabolism in nonalcoholic steatohepatitis
Luukkonen P, Sakuma I, Gaspar R, Mooring M, Nasiri A, Kahn M, Zhang X, Zhang D, Sammalkorpi H, Penttilä A, Orho-Melander M, Arola J, Juuti A, Zhang X, Yimlamai D, Yki-Järvinen H, Petersen K, Shulman G. Inhibition of HSD17B13 protects against liver fibrosis by inhibition of pyrimidine catabolism in nonalcoholic steatohepatitis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2217543120. PMID: 36669104, PMCID: PMC9942818, DOI: 10.1073/pnas.2217543120.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseLiver fibrosisLiver diseaseCommon chronic liver diseaseChronic liver diseaseFatty liver diseaseRisk of fibrosisDistinct mouse modelsPyrimidine catabolismNonalcoholic steatohepatitisMouse modelTherapeutic targetFibrosisDihydropyrimidine dehydrogenaseHuman liverA variantCommon variantsMetabolomics approachDiseaseMiceInhibitionCatabolismKnockdownSteatohepatitisGimeracil
2022
Q-Flux: A method to assess hepatic mitochondrial succinate dehydrogenase, methylmalonyl-CoA mutase, and glutaminase fluxes in vivo
Hubbard B, LaMoia T, Goedeke L, Gaspar R, Galsgaard K, Kahn M, Mason G, Shulman G. Q-Flux: A method to assess hepatic mitochondrial succinate dehydrogenase, methylmalonyl-CoA mutase, and glutaminase fluxes in vivo. Cell Metabolism 2022, 35: 212-226.e4. PMID: 36516861, PMCID: PMC9887731, DOI: 10.1016/j.cmet.2022.11.011.Peer-Reviewed Original ResearchMetformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis
LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, Hüttemann M, Shulman GI. Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2122287119. PMID: 35238637, PMCID: PMC8916010, DOI: 10.1073/pnas.2122287119.Peer-Reviewed Original ResearchConceptsGlucose-lowering effectPlasma glucose concentrationComplex I activityHepatic gluconeogenesisType 2 diabetes mellitusGlucose concentrationGlycerol-3-phosphate dehydrogenase activityI activityDiabetes mellitusSelective inhibitionMetforminInhibitionRelevant concentrationsGluconeogenesisPhenforminVivoMost studiesDehydrogenase activityGalegineMellitusDyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice
Bhat N, Narayanan A, Fathzadeh M, Kahn M, Zhang D, Goedeke L, Neogi A, Cardone RL, Kibbey RG, Fernandez-Hernando C, Ginsberg HN, Jain D, Shulman G, Mani A. Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice. Journal Of Clinical Investigation 2022, 132: e153724. PMID: 34855620, PMCID: PMC8803348, DOI: 10.1172/jci153724.Peer-Reviewed Original ResearchConceptsDe novo lipogenesisNonalcoholic steatohepatitisInsulin resistanceHepatic lipogenesisElevated de novo lipogenesisNonalcoholic fatty liver diseaseFatty liver diseaseLiver of patientsHepatic glycogen storageHigh-sucrose dietHepatic insulin resistanceFatty acid uptakeMetabolic syndromeLiver diseaseHepatic steatosisTriacylglycerol secretionNovo lipogenesisHepatic insulinTherapeutic targetImpaired activationAcid uptakeGlycogen storageMouse liverLiverLipogenesisSex‐ and strain‐specific effects of mitochondrial uncoupling on age‐related metabolic diseases in high‐fat diet‐fed mice
Goedeke L, Murt KN, Di Francesco A, Camporez JP, Nasiri AR, Wang Y, Zhang X, Cline GW, de Cabo R, Shulman GI. Sex‐ and strain‐specific effects of mitochondrial uncoupling on age‐related metabolic diseases in high‐fat diet‐fed mice. Aging Cell 2022, 21: e13539. PMID: 35088525, PMCID: PMC8844126, DOI: 10.1111/acel.13539.Peer-Reviewed Original ResearchConceptsControlled-release mitochondrial protonophoreAge-related metabolic diseasesHepatocellular carcinomaMetabolic diseasesHigh-fat diet-fed miceProtein kinase C epsilon activationDiet-induced obese miceWhole-body energy expenditureC57BL/6J male miceDiet-fed miceHigh-fat dietHepatic lipid peroxidationHepatic lipid contentMitochondrial uncouplingHepatic insulin resistanceHigh therapeutic indexHepatic mitochondrial biogenesisStrain-specific effectsSex-specific mannerCRMP treatmentHFD feedingUnwanted side effectsObese miceInsulin resistanceChronic ingestion
2021
MMAB promotes negative feedback control of cholesterol homeostasis
Goedeke L, Canfrán-Duque A, Rotllan N, Chaube B, Thompson BM, Lee RG, Cline GW, McDonald JG, Shulman GI, Lasunción MA, Suárez Y, Fernández-Hernando C. MMAB promotes negative feedback control of cholesterol homeostasis. Nature Communications 2021, 12: 6448. PMID: 34750386, PMCID: PMC8575900, DOI: 10.1038/s41467-021-26787-7.Peer-Reviewed Original ResearchMeSH KeywordsAlkyl and Aryl TransferasesAnimalsCell Line, TumorCholesterolCholesterol, LDLFeedback, PhysiologicalGene Expression ProfilingHeLa CellsHep G2 CellsHomeostasisHumansHydroxymethylglutaryl CoA ReductasesLiverMice, Inbred C57BLMice, KnockoutPromoter Regions, GeneticReceptors, LDLRNA InterferenceSterol Regulatory Element Binding Protein 2ConceptsCholesterol biosynthesisCholesterol homeostasisMouse hepatic cell lineIntegrative genomic strategyIntricate regulatory networkMaster transcriptional regulatorCellular cholesterol levelsHMGCR activityLDL-cholesterol uptakeCholesterol levelsHuman hepatic cellsSterol contentGenomic strategiesTranscriptional regulatorsRegulatory networksIntracellular cholesterol levelsGene expressionUnexpected roleHepatic cell linesBiosynthesisMMABIntracellular levelsCell linesHomeostasisExpression of SREBP2Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis
Jiang Z, Zhao M, Voilquin L, Jung Y, Aikio MA, Sahai T, Dou FY, Roche AM, Carcamo-Orive I, Knowles JW, Wabitsch M, Appel EA, Maikawa CL, Camporez JP, Shulman GI, Tsai L, Rosen ED, Gardner CD, Spiegelman BM, Svensson KJ. Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis. Cell Metabolism 2021, 33: 1836-1852.e11. PMID: 34348115, PMCID: PMC8429235, DOI: 10.1016/j.cmet.2021.07.010.Peer-Reviewed Original ResearchConceptsFatty liver diseaseAdipose glucose uptakeGlucose toleranceLiver diseaseHepatic steatosisGlucose uptakeDiet-induced obese miceImpaired glucose toleranceInsulin-like growth factor receptorType 2 diabetesHepatic lipid synthesisIsthmin 1Growth factor receptorObese miceInsulin sensitivityTherapeutic dosingMouse modelGlucoregulatory functionGlucose regulationUnmet needTherapeutic potentialDiabetesLipid accumulationPI3K-AktFactor receptorDeletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance
Schumann T, König J, von Loeffelholz C, Vatner DF, Zhang D, Perry RJ, Bernier M, Chami J, Henke C, Kurzbach A, El-Agroudy NN, Willmes DM, Pesta D, de Cabo R, O´Sullivan J, Simon E, Shulman GI, Hamilton BS, Birkenfeld AL. Deletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance. Communications Biology 2021, 4: 826. PMID: 34211098, PMCID: PMC8249653, DOI: 10.1038/s42003-021-02279-8.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsDiabetes Mellitus, Type 2Diet, High-FatGene ExpressionGenetic Predisposition to DiseaseHumansInsulin ResistanceLipid MetabolismLiverMice, Inbred C57BLMice, KnockoutMitochondriaMonocarboxylic Acid TransportersNon-alcoholic Fatty Liver DiseaseObesityOxygen ConsumptionConceptsMitochondrial respirationGenome-wide association studiesNovel susceptibility genesLipid accumulationPlasma membraneAMPK activationAssociation studiesPhysiological functionsEctopic lipid accumulationReduced hepatic lipid accumulationSusceptibility genesLactate transporterMonocarboxylate transportersPotential targetGenesTransportersDeletionLipid contentHepatic lipid accumulationPotential importanceKnockout miceRespirationHepatic insulin sensitivityMCT13AccumulationMechanisms and disease consequences of nonalcoholic fatty liver disease
Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021, 184: 2537-2564. PMID: 33989548, DOI: 10.1016/j.cell.2021.04.015.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseProgressive liver injuryFatty liver diseaseNonalcoholic steatohepatitisLiver diseaseLiver injuryHepatocellular carcinomaEffect of NAFLDHepatic stellate cell activationChronic liver diseaseBile acid toxicityStellate cell activationFibrosis progressionAdvanced subtypesMacrophage dysfunctionPathogenetic mechanismsCell activationHepatic glucoseLipid metabolismDisease consequencesDiseaseAcid toxicityCarcinomaInjuryMetabolic originValidation of a Gas Chromatography-Mass Spectrometry Method for the Measurement of the Redox State Metabolic Ratios Lactate/Pyruvate and β-Hydroxybutyrate/Acetoacetate in Biological Samples
Wijngaard R, Perramón M, Parra-Robert M, Hidalgo S, Butrico G, Morales-Ruiz M, Zeng M, Casals E, Jiménez W, Fernández-Varo G, Shulman GI, Cline GW, Casals G. Validation of a Gas Chromatography-Mass Spectrometry Method for the Measurement of the Redox State Metabolic Ratios Lactate/Pyruvate and β-Hydroxybutyrate/Acetoacetate in Biological Samples. International Journal Of Molecular Sciences 2021, 22: 4752. PMID: 33946157, PMCID: PMC8125771, DOI: 10.3390/ijms22094752.Peer-Reviewed Original ResearchTherapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH
Goedeke L, Shulman GI. Therapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH. Molecular Metabolism 2021, 46: 101178. PMID: 33545391, PMCID: PMC8085597, DOI: 10.1016/j.molmet.2021.101178.Peer-Reviewed Original ResearchConceptsFatty liver diseaseLiver diseaseSmall molecule mitochondrial uncouplersTherapeutic potentialMitochondrial uncouplerNon-human primate studiesType 2 diabetesWide therapeutic indexSystemic toxicity concernsTreatment of MetabolicCell-specific effectsInsulin resistanceTherapeutic indexMetabolic diseasesNonalcoholic hepatosteatosisSustained increaseToxicity concernsPrimate studiesDiseaseTherapeutic developmentMitochondrial inefficiencyNutrient oxidationATP productionTreatmentTissueShort-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation
Lyu K, Zhang D, Song J, Li X, Perry RJ, Samuel VT, Shulman GI. Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation. JCI Insight 2021, 6: e139946. PMID: 33411692, PMCID: PMC7934919, DOI: 10.1172/jci.insight.139946.Peer-Reviewed Original ResearchConceptsInsulin resistanceInsulin actionAdipose tissue insulin resistanceTissue insulin resistanceWT control miceHyperinsulinemic-euglycemic clampShort-term HFDTissue insulin actionAdipose tissue insulin actionDiet-fed ratsPotential therapeutic targetHFD feedingControl miceInsulin sensitivityTherapeutic targetLipolysis suppressionImpairs insulinHFDPKCε activationGlucose uptakeΕ activationMiceDiacylglycerol accumulationRecent evidenceProtein kinase C
2020
A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21
Han MS, Perry RJ, Camporez JP, Scherer PE, Shulman GI, Gao G, Davis RJ. A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21. Genes & Development 2020, 35: 133-146. PMID: 33334822, PMCID: PMC7778269, DOI: 10.1101/gad.344556.120.Peer-Reviewed Original ResearchMitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance
He F, Huang Y, Song Z, Zhou HJ, Zhang H, Perry RJ, Shulman GI, Min W. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. Journal Of Experimental Medicine 2020, 218: e20201416. PMID: 33315085, PMCID: PMC7927432, DOI: 10.1084/jem.20201416.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAdipose TissueAnimalsDiabetes Mellitus, Type 2Diet, High-FatEnergy MetabolismFatty LiverGene DeletionGene TargetingGluconeogenesisHomeostasisHumansHyperglycemiaInflammationInsulin ResistanceLipogenesisLiverMaleMice, Inbred C57BLMice, KnockoutMitochondriaMitophagyNF-kappa BOxidative StressPhenotypeReactive Oxygen SpeciesSequestosome-1 ProteinSignal TransductionThioredoxinsConceptsHepatic insulin resistanceWhite adipose tissueInsulin resistanceAdipose inflammationType 2 diabetes mellitusLipid metabolic disordersNF-κB inhibitorAdipose-specific deletionWhole-body energy homeostasisAltered fatty acid metabolismFatty acid metabolismT2DM progressionT2DM patientsDiabetes mellitusReactive oxygen species pathwayHepatic steatosisMetabolic disordersNF-κBP62/SQSTM1Adipose tissueHuman adipocytesEnergy homeostasisExcessive mitophagyOxygen species pathwayInflammationMechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice
Li X, Zhang D, Vatner DF, Goedeke L, Hirabara SM, Zhang Y, Perry RJ, Shulman GI. Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 32584-32593. PMID: 33293421, PMCID: PMC7768680, DOI: 10.1073/pnas.1922169117.Peer-Reviewed Original ResearchConceptsEpididymal white adipose tissueInsulin resistanceAdiponectin treatmentAdipose tissueHigh-fat diet-induced insulin resistanceType 2 diabetes mellitusWhole-body insulin resistanceDiet-induced insulin resistanceSkeletal muscleEctopic lipid storageReverses insulin resistanceInsulin-mediated suppressionMuscle fatty acid oxidationEndogenous glucose productionMuscle insulin resistanceWhite adipose tissueLipoprotein lipase activityMuscle fat oxidationPKCε translocationInsulin-stimulated glucose uptakeFatty acid oxidationTAG uptakeDiabetes mellitusMuscle sensitivityAkt serine phosphorylationHepatic Insulin Resistance Is Not Pathway Selective in Humans With Nonalcoholic Fatty Liver Disease.
Ter Horst KW, Vatner DF, Zhang D, Cline GW, Ackermans MT, Nederveen AJ, Verheij J, Demirkiran A, van Wagensveld BA, Dallinga-Thie GM, Nieuwdorp M, Romijn JA, Shulman GI, Serlie MJ. Hepatic Insulin Resistance Is Not Pathway Selective in Humans With Nonalcoholic Fatty Liver Disease. Diabetes Care 2020, 44: 489-498. PMID: 33293347, PMCID: PMC7818337, DOI: 10.2337/dc20-1644.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseDe novo lipogenesisFatty liver diseaseBariatric surgeryLiver diseaseImpaired insulin-mediated suppressionGlucose productionHepatic de novo lipogenesisPeripheral glucose metabolismHyperinsulinemic-euglycemic clampType 2 diabetesInsulin-mediated suppressionInsulin-resistant subjectsHepatic insulin resistanceLiver biopsy samplesSuppress glucose productionLipogenic transcription factorsInsulin-mediated regulationObese subjectsInsulin resistanceAcute increaseNovo lipogenesisGlucose metabolismBiopsy samplesParadoxical increaseEffect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults
Kahleova H, Petersen KF, Shulman GI, Alwarith J, Rembert E, Tura A, Hill M, Holubkov R, Barnard ND. Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults. JAMA Network Open 2020, 3: e2025454. PMID: 33252690, PMCID: PMC7705596, DOI: 10.1001/jamanetworkopen.2020.25454.Peer-Reviewed Original ResearchMeSH KeywordsAbsorptiometry, PhotonAdultAgedBlood GlucoseBody CompositionBody WeightCholesterolCholesterol, HDLCholesterol, LDLC-PeptideDiet, Fat-RestrictedDiet, VeganEnergy IntakeEnergy MetabolismFemaleGlycated HemoglobinHepatocytesHumansInsulinInsulin ResistanceIntra-Abdominal FatLipid MetabolismLiverMaleMiddle AgedMuscle Fibers, SkeletalMuscle, SkeletalObesityOverweightPostprandial PeriodProton Magnetic Resonance SpectroscopyTriglyceridesConceptsLow-fat vegan dietHomeostasis model assessment indexIntramyocellular lipid levelsModel assessment indexIntervention groupLipid levelsBody weightInsulin resistancePostprandial metabolismVegan dietOverweight adultsDietary interventionInsulin sensitivityThermic effectControl groupPlant-based dietary interventionDual X-ray absorptiometryInsulin resistance leadExcess body weightInsulin sensitivity indexType 2 diabetesMajor health problemProton magnetic resonance spectroscopyX-ray absorptiometrySubset of participants