2024
Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease
Petersen K, Dufour S, Mehal W, Shulman G. Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease. Cell Metabolism 2024, 36: 2359-2366.e3. PMID: 39197461, PMCID: PMC11612994, DOI: 10.1016/j.cmet.2024.07.023.Peer-Reviewed Original Research1577-P: CIDEB Knockdown Promotes Increased Hepatic Mitochondrial Fat Oxidation and Reverses Hepatic Steatosis and Hepatic Insulin Resistance by the PKCε-Insulin Receptor Kinase Pathway
ZHENG J, NASIRI A, GASPAR R, HUBBARD B, SAKUMA I, MA X, MURRAY S, PERELIS M, BARNES W, SAMUEL V, PETERSEN K, SHULMAN G. 1577-P: CIDEB Knockdown Promotes Increased Hepatic Mitochondrial Fat Oxidation and Reverses Hepatic Steatosis and Hepatic Insulin Resistance by the PKCε-Insulin Receptor Kinase Pathway. Diabetes 2024, 73 DOI: 10.2337/db24-1577-p.Peer-Reviewed Original ResearchReceptor kinase pathwaysMitochondrial fat oxidationHepatic insulin resistanceKinase pathwayExpression of cidebAmeliorated HFD-induced hepatic steatosisHFD-induced hepatic steatosisHFD-induced insulin resistanceSteatotic liver diseasePathogenesis of type 2 diabetesHepatic steatosisCidebHyperinsulinemic-euglycemic clamp studiesHepatic triglyceride accumulationInsulin resistanceReverse hepatic steatosisTriglyceride accumulationHepatic insulin sensitivityInsulin sensitivityPathwayHepatic expressionHigh-fatWhole-body insulin sensitivityLiver diseaseTranslocation
2022
Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice
Bhat N, Narayanan A, Fathzadeh M, Kahn M, Zhang D, Goedeke L, Neogi A, Cardone RL, Kibbey RG, Fernandez-Hernando C, Ginsberg HN, Jain D, Shulman G, Mani A. Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice. Journal Of Clinical Investigation 2022, 132: e153724. PMID: 34855620, PMCID: PMC8803348, DOI: 10.1172/jci153724.Peer-Reviewed Original ResearchConceptsDe novo lipogenesisNonalcoholic steatohepatitisInsulin resistanceHepatic lipogenesisElevated de novo lipogenesisNonalcoholic fatty liver diseaseFatty liver diseaseLiver of patientsHepatic glycogen storageHigh-sucrose dietHepatic insulin resistanceFatty acid uptakeMetabolic syndromeLiver diseaseHepatic steatosisTriacylglycerol secretionNovo lipogenesisHepatic insulinTherapeutic targetImpaired activationAcid uptakeGlycogen storageMouse liverLiverLipogenesis
2021
Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis
Jiang Z, Zhao M, Voilquin L, Jung Y, Aikio MA, Sahai T, Dou FY, Roche AM, Carcamo-Orive I, Knowles JW, Wabitsch M, Appel EA, Maikawa CL, Camporez JP, Shulman GI, Tsai L, Rosen ED, Gardner CD, Spiegelman BM, Svensson KJ. Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis. Cell Metabolism 2021, 33: 1836-1852.e11. PMID: 34348115, PMCID: PMC8429235, DOI: 10.1016/j.cmet.2021.07.010.Peer-Reviewed Original ResearchConceptsFatty liver diseaseAdipose glucose uptakeGlucose toleranceLiver diseaseHepatic steatosisGlucose uptakeDiet-induced obese miceImpaired glucose toleranceInsulin-like growth factor receptorType 2 diabetesHepatic lipid synthesisIsthmin 1Growth factor receptorObese miceInsulin sensitivityTherapeutic dosingMouse modelGlucoregulatory functionGlucose regulationUnmet needTherapeutic potentialDiabetesLipid accumulationPI3K-AktFactor receptor282-OR: The Effect of Glucagon on Rates of Hepatic Mitochondrial Oxidation and Pyruvate Carboxylase Flux in Man Assessed by Positional Isotopomer NMR Tracer Analysis (PINTA)
PETERSEN K, SHULMAN G. 282-OR: The Effect of Glucagon on Rates of Hepatic Mitochondrial Oxidation and Pyruvate Carboxylase Flux in Man Assessed by Positional Isotopomer NMR Tracer Analysis (PINTA). Diabetes 2021, 70 DOI: 10.2337/db21-282-or.Peer-Reviewed Original ResearchHepatic mitochondrial oxidationPhysiological increaseSpouse/partnerDual agonistsGilead SciencesJanssen ResearchTreatment of T2DPlasma glucagon concentrationsNovo NordiskMitochondrial oxidationEffect of glucagonPyruvate carboxylase fluxMitochondrial fat oxidationAnorexic effectGlucagon concentrationsHepatic steatosisClinical trialsC-peptideGLP-1Food intakeHealthy volunteersFat oxidationIonis PharmaceuticalsGlucagonGlucose production
2020
Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance
He F, Huang Y, Song Z, Zhou HJ, Zhang H, Perry RJ, Shulman GI, Min W. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. Journal Of Experimental Medicine 2020, 218: e20201416. PMID: 33315085, PMCID: PMC7927432, DOI: 10.1084/jem.20201416.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAdipose TissueAnimalsDiabetes Mellitus, Type 2Diet, High-FatEnergy MetabolismFatty LiverGene DeletionGene TargetingGluconeogenesisHomeostasisHumansHyperglycemiaInflammationInsulin ResistanceLipogenesisLiverMaleMice, Inbred C57BLMice, KnockoutMitochondriaMitophagyNF-kappa BOxidative StressPhenotypeReactive Oxygen SpeciesSequestosome-1 ProteinSignal TransductionThioredoxinsConceptsHepatic insulin resistanceWhite adipose tissueInsulin resistanceAdipose inflammationType 2 diabetes mellitusLipid metabolic disordersNF-κB inhibitorAdipose-specific deletionWhole-body energy homeostasisAltered fatty acid metabolismFatty acid metabolismT2DM progressionT2DM patientsDiabetes mellitusReactive oxygen species pathwayHepatic steatosisMetabolic disordersNF-κBP62/SQSTM1Adipose tissueHuman adipocytesEnergy homeostasisExcessive mitophagyOxygen species pathwayInflammationMembrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice
Abulizi A, Vatner DF, Ye Z, Wang Y, Camporez JP, Zhang D, Kahn M, Lyu K, Sirwi A, Cline GW, Hussain MM, Aspichueta P, Samuel VT, Shulman GI. Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice. Journal Of Lipid Research 2020, 61: 1565-1576. PMID: 32907986, PMCID: PMC7707176, DOI: 10.1194/jlr.ra119000586.Peer-Reviewed Original ResearchConceptsHepatic insulin resistanceInsulin resistanceHepatic insulin sensitivityHepatic steatosisLipid-induced hepatic insulin resistancePKCε activationInsulin sensitivityKnockout miceNormal hepatic insulin sensitivityWild-type control miceHepatic ceramide contentHyperinsulinemic-euglycemic clampComprehensive metabolic phenotypingLipid dropletsHepatic DAG contentDAG contentGlucose intoleranceControl miceMTTP activityHepatic insulinAnimal modelsSteatosisAKT Ser/ThrMiceMetabolic phenotypingEffect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease
Luukkonen PK, Dufour S, Lyu K, Zhang XM, Hakkarainen A, Lehtimäki TE, Cline GW, Petersen KF, Shulman GI, Yki-Järvinen H. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 7347-7354. PMID: 32179679, PMCID: PMC7132133, DOI: 10.1073/pnas.1922344117.Peer-Reviewed Original ResearchMeSH KeywordsBody CompositionCitrate (si)-SynthaseDiet, KetogenicFatty AcidsFatty Acids, NonesterifiedFatty LiverFemaleHumansInsulinInsulin ResistanceLipoproteins, VLDLLiverMaleMiddle AgedMitochondriaNon-alcoholic Fatty Liver DiseaseObesityOverweightOxidation-ReductionPyruvate CarboxylaseTriglyceridesConceptsNonalcoholic fatty liver diseaseFatty liver diseaseIntrahepatic triglyceridesKetogenic dietHepatic insulin resistanceNonesterified fatty acidsInsulin resistanceLiver diseaseOverweight/obese subjectsHepatic mitochondrial redox stateSerum insulin concentrationsHepatic mitochondrial metabolismProton magnetic resonance spectroscopyStable isotope infusionKD dietObese subjectsFatty acidsPlasma leptinHepatic steatosisInsulin concentrationsNEFA concentrationsBody weightTriiodothyronine concentrationsIsotope infusionWeight lossGlucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis
Perry RJ, Zhang D, Guerra MT, Brill AL, Goedeke L, Nasiri AR, Rabin-Court A, Wang Y, Peng L, Dufour S, Zhang Y, Zhang XM, Butrico GM, Toussaint K, Nozaki Y, Cline GW, Petersen KF, Nathanson MH, Ehrlich BE, Shulman GI. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature 2020, 579: 279-283. PMID: 32132708, PMCID: PMC7101062, DOI: 10.1038/s41586-020-2074-6.Peer-Reviewed Original ResearchConceptsHepatic steatosisType 2Nonalcoholic fatty liver diseaseDiet-induced hepatic steatosisFatty liver diseasePlasma glucagon concentrationsHepatic adipose triglyceride lipaseHepatic acetyl-CoA contentHepatic glucose productionRatio of insulinHepatic glucose metabolismInositol triphosphate receptorAdipose triglyceride lipaseMitochondrial oxidationMitochondrial fat oxidationGlucose intoleranceLiver diseaseGlucagon concentrationsInsulin resistancePortal veinAcetyl-CoA contentHepatic lipolysisGlucagon biologyGlucose metabolismKnockout mice
2019
Controlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates
Goedeke L, Peng L, Montalvo-Romeral V, Butrico GM, Dufour S, Zhang XM, Perry RJ, Cline GW, Kievit P, Chng K, Petersen KF, Shulman GI. Controlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates. Science Translational Medicine 2019, 11 PMID: 31578240, PMCID: PMC6996238, DOI: 10.1126/scitranslmed.aay0284.Peer-Reviewed Original ResearchConceptsControlled-release mitochondrial protonophoreNonalcoholic fatty liver diseaseCRMP treatmentHepatic triglyceridesDiet-induced rodent modelReversal of hypertriglyceridemiaFatty liver diseaseNonhuman primate modelMitochondrial protonophoreEndogenous glucose productionLow-density lipoproteinMitochondrial fat oxidationHepatic inflammationMetabolic syndromeFatty liverLiver diseaseHepatic steatosisInsulin resistanceAdverse reactionsPlasma triglyceridesPrimate modelOral administrationFood intakeHepatic mitochondrial oxidationRodent models266-OR: Plasma Membrane sn-1,2 Diacylglycerol Mediates Lipid-Induced Hepatic Insulin Resistance
LYU K, ZHANG Y, ZHANG D, KAHN M, NOZAKI Y, BHANOT S, BOGAN J, CLINE G, SAMUEL V, SHULMAN G. 266-OR: Plasma Membrane sn-1,2 Diacylglycerol Mediates Lipid-Induced Hepatic Insulin Resistance. Diabetes 2019, 68 DOI: 10.2337/db19-266-or.Peer-Reviewed Original ResearchHepatic insulin resistanceInsulin resistanceExogenous fatty acidsInsulin actionLipid dropletsHepatic ceramide contentHyperinsulinemic-euglycemic clampHepatic insulin actionBioactive lipid speciesHepatic glucose productionChow-fed ratsHepatic diacylglycerol contentAdvisory PanelFatty acidsHepatic steatosisImpaired suppressionSingle doseSpouse/partnerGlucose productionPKCε activationJanssen ResearchAcute knockdownCeramide contentNational InstituteReceptor kinase activation19-OR: Controlled-Release Mitochondrial Protonophore (CRMP) Reverses Hypertriglyceridemia and Hepatic Steatosis in Dysmetabolic Nonhuman Primates
GOEDEKE L, ROMERAL V, BUTRICO G, KAHN M, DUFOUR S, ZHANG X, CLINE G, PETERSEN K, CHNG K, SHULMAN G. 19-OR: Controlled-Release Mitochondrial Protonophore (CRMP) Reverses Hypertriglyceridemia and Hepatic Steatosis in Dysmetabolic Nonhuman Primates. Diabetes 2019, 68 DOI: 10.2337/db19-19-or.Peer-Reviewed Original ResearchControlled-release mitochondrial protonophoreSpouse/partnerCRMP treatmentInsulin resistanceDiet-induced rodent modelJanssen ResearchReversal of hypertriglyceridemiaNAFLD/NASHInflammation/fibrosisNonhuman primate modelMitochondrial protonophoreEndogenous glucose productionHepatic insulin resistanceHepatic acetyl-CoA contentAdvisory PanelMitochondrial fat oxidationMetabolic syndromeFatty liverHepatic steatosisAdverse reactionsHepatic triglyceridesAcetyl-CoA contentPrimate modelNovo Nordisk A/S.Food intake
2018
Effect of a Controlled-Release Mitochondrial Protonophore (CRMP) on Healthspan and Lifespan in Mice
GOEDEKE L, CAMPOREZ J, NASIRI A, WANG Y, ZHANG X, SHULMAN G. Effect of a Controlled-Release Mitochondrial Protonophore (CRMP) on Healthspan and Lifespan in Mice. Diabetes 2018, 67 DOI: 10.2337/db18-123-lb.Peer-Reviewed Original ResearchControlled-release mitochondrial protonophoreCRMP treatmentHepatic steatosisDiet-induced rodent modelWhole body insulin responsivenessInflammation/fibrosisMale C57BL/6J miceWhole-body energy expenditureHyperinsulinemic-euglycemic clampHigh-fat dietType 2 diabetesGlucose infusion rateMitochondrial protonophorePlasma glucose concentrationWide therapeutic indexStrict dietary regimeSecond-generation compoundsTransaminase levelsFatty liverLiver triglyceridesInsulin resistanceAge-related diseasesC57BL/6J miceHepatic triglyceridesFood intakeMechanisms by Which Glucagon Acutely Stimulates Hepatic Mitochondrial Oxidation and Gluconeogenesis
PERRY R, WANG Y, BRILL A, PENG L, ZHANG D, DUFOUR S, ZHANG Y, ZHANG X, NOZAKI Y, CLINE G, EHRLICH B, PETERSEN K, SHULMAN G. Mechanisms by Which Glucagon Acutely Stimulates Hepatic Mitochondrial Oxidation and Gluconeogenesis. Diabetes 2018, 67 DOI: 10.2337/db18-146-or.Peer-Reviewed Original ResearchSpouse/partnerHigh-fat diet-induced hepatic steatosisNonalcoholic fatty liver diseaseDiet-induced hepatic steatosisGilead SciencesFatty liver diseasePlasma glucagon concentrationsType 2 diabetesHepatic acetyl-CoA contentLiver-specific knockdownIntracellular calcium signalingMitochondrial oxidationGlucose intoleranceAdipocyte triglyceride lipaseLiver diseaseWT miceGlucagon concentrationsHepatic steatosisGlucagon infusionAcetyl-CoA contentChronic increaseHepatic mitochondrial oxidationGlucagon biologyGlucagon stimulationKnockout mice
2000
Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice
Gavrilova O, Marcus-Samuels B, Graham D, Kim J, Shulman G, Castle A, Vinson C, Eckhaus M, Reitman M. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. Journal Of Clinical Investigation 2000, 105: 271-278. PMID: 10675352, PMCID: PMC377444, DOI: 10.1172/jci7901.Peer-Reviewed Original ResearchConceptsA-ZIP/FLipoatrophic diabetesAdipose tissueNear-physiological amountsMuscle insulin sensitivityLack of fatLipoatrophic miceInsulin levelsHepatic steatosisInsulin resistanceInsulin sensitivitySevere formFFA levelsDiabetesDonor fatTransplantationBeneficial effectsEndocrine communicationSubcutaneous sitesMiceSurgical implantationAdipose physiologyHyperglycemiaFatTissue