2024
Adaption and National Validation of a Tool for Predicting Mortality from Other Causes Among Men with Nonmetastatic Prostate Cancer
Justice A, Tate J, Howland F, Gaziano J, Kelley M, McMahon B, Haiman C, Wadia R, Madduri R, Danciu I, Leppert J, Leapman M, Thurtle D, Gnanapragasam V. Adaption and National Validation of a Tool for Predicting Mortality from Other Causes Among Men with Nonmetastatic Prostate Cancer. European Urology Oncology 2024, 7: 923-932. PMID: 38171965, DOI: 10.1016/j.euo.2023.11.023.Peer-Reviewed Original ResearchVeterans Health AdministrationCharlson Comorbidity IndexNon-prostate cancer mortalityProstate cancer mortalityNonmetastatic prostate cancerComorbidity indexCancer mortalityProvider estimationProstate cancerHealth AdministrationUS Veterans Health AdministrationElectronic health record-based toolsYear of diagnosisRisk of deathObservational cohortMedian ageNonmetastatic cancerPredicting MortalityC-statisticHispanic ethnicityTreatment groupsMortalityCancerNational validationAge
2022
Survival analysis of localized prostate cancer with deep learning
Dai X, Park JH, Yoo S, D’Imperio N, McMahon BH, Rentsch CT, Tate JP, Justice AC. Survival analysis of localized prostate cancer with deep learning. Scientific Reports 2022, 12: 17821. PMID: 36280773, PMCID: PMC9592586, DOI: 10.1038/s41598-022-22118-y.Peer-Reviewed Original ResearchConceptsProstate cancer mortalityComposite outcomeCancer mortalityRisk predictionTime-dependent c-statisticsProstate-specific antigen (PSA) testLarge integrated healthcare systemLocalized prostate cancerElectronic health record dataClinical decision-making processProstate cancer patientsIntegrated healthcare systemProstate Cancer Risk PredictionHealth record dataLarge-scale electronic health record dataRisk prediction modelCancer risk predictionAntigen testC-statisticCancer patientsProstate cancerClinical decision systemSurvival analysisVeterans AffairsDeep learningIn with the old, in with the new: machine learning for time to event biomedical research
Danciu I, Agasthya G, Tate JP, Chandra-Shekar M, Goethert I, Ovchinnikova OS, McMahon BH, Justice AC. In with the old, in with the new: machine learning for time to event biomedical research. Journal Of The American Medical Informatics Association 2022, 29: 1737-1743. PMID: 35920306, PMCID: PMC9471708, DOI: 10.1093/jamia/ocac106.Peer-Reviewed Original ResearchValidation of a multi-ancestry polygenic risk score and age-specific risks of prostate cancer: A meta-analysis within diverse populations
Chen F, Darst BF, Madduri RK, Rodriguez AA, Sheng X, Rentsch CT, Andrews C, Tang W, Kibel AS, Plym A, Cho K, Jalloh M, Gueye SM, Niang L, Ogunbiyi OJ, Popoola O, Adebiyi AO, Aisuodionoe-Shadrach OI, Ajibola HO, Jamda MA, Oluwole OP, Nwegbu M, Adusei B, Mante S, Darkwa-Abrahams A, Mensah JE, Adjei AA, Diop H, Lachance J, Rebbeck TR, Ambs S, Gaziano JM, Justice AC, Conti DV, Haiman CA. Validation of a multi-ancestry polygenic risk score and age-specific risks of prostate cancer: A meta-analysis within diverse populations. ELife 2022, 11: e78304. PMID: 35801699, PMCID: PMC9322982, DOI: 10.7554/elife.78304.Peer-Reviewed Original ResearchConceptsProstate cancer riskPolygenic risk scoresProstate cancerCancer riskOdds ratioMillion Veteran ProgramRisk scoreRisk stratification toolAge-specific absolute risksAfrican ancestry menCancer odds ratiosVeterans Health AdministrationCase-control studyNonaggressive prostate cancerProstate Cancer FoundationAge-specific riskAssociation of PRSPRS categoriesRisk-stratified screeningVeteran ProgramNational Cancer InstituteEuropean ancestry menStratification toolAbsolute riskEffect modification
2021
Prostate Cancer Screening and Incidence among Aging Persons Living with HIV
Leapman MS, Stone K, Wadia R, Park LS, Gibert CL, Goetz MB, Bedimo R, Rodriguez-Barradas M, Shebl F, Justice AC, Brown ST, Crothers K, Sigel KM. Prostate Cancer Screening and Incidence among Aging Persons Living with HIV. Journal Of Urology 2021, 207: 324-332. PMID: 34555924, PMCID: PMC8741750, DOI: 10.1097/ju.0000000000002249.Peer-Reviewed Original ResearchConceptsPSA testingHIV statusProstate cancerProstate biopsyCancer incidenceHuman immunodeficiency virus statusProstate-specific antigen (PSA) testingVeterans Aging Cohort StudyProspective national cohortMultivariable Poisson modelsAging Cohort StudySpecific antigen testingHuman immunodeficiency virusProstate cancer screeningUninfected comparatorsCohort studyIncident cancerAntigen testingImmunodeficiency virusMean ageCancer screeningNational cohortCancer stageVirus statusMultivariable model
2020
Using longitudinal PSA values and machine learning for predicting progression of early stage prostate cancer in veterans.
Danciu I, Erwin S, Agasthya G, Janet T, McMahon B, Tourassi G, Justice A. Using longitudinal PSA values and machine learning for predicting progression of early stage prostate cancer in veterans. Journal Of Clinical Oncology 2020, 38: e17554-e17554. DOI: 10.1200/jco.2020.38.15_suppl.e17554.Peer-Reviewed Original ResearchDisease progressionClinical data warehouseLast PSAPSA valuesEarly-stage prostate cancerSEER summary stageTime of diagnosisAppropriate treatment planProstate cancer patientsStage prostate cancerHealth record dataProstate cancer diagnosisEvidence-based approachClinical decision supportCancer RegistryRadium-223Cancer patientsGleason scoreSummary stageLaboratory valuesProstate cancerTreatment planOutcome predictionDiagnosisPSAPredicting prostate cancer death among 98,994 veterans: Differences by race/ethnicity.
Janet T, Danciu I, Justice A, Leapman M, McMahon B, Wadia R. Predicting prostate cancer death among 98,994 veterans: Differences by race/ethnicity. Journal Of Clinical Oncology 2020, 38: e17609-e17609. DOI: 10.1200/jco.2020.38.15_suppl.e17609.Peer-Reviewed Original ResearchProstate cancer deathNon-Hispanic blacksNon-Hispanic whitesVeterans Affairs Healthcare SystemRace/ethnicityHazard ratioGleason scoreCancer deathProstate cancerU.S. Veterans Affairs healthcare systemProstate cancer disease progressionDistant metastatic diseaseProstate cancer mortalityCancer disease progressionLocalized diseasePSA levelsMedian ageMetastatic diseaseLymph nodesPrognostic indexCancer mortalityTumor stageDisease progressionCox modelAge strata
2009
Incidence of Non-AIDS-Defining Malignancies in HIV-Infected Versus Noninfected Patients in the HAART Era: Impact of Immunosuppression
Bedimo RJ, McGinnis KA, Dunlap M, Rodriguez-Barradas MC, Justice AC. Incidence of Non-AIDS-Defining Malignancies in HIV-Infected Versus Noninfected Patients in the HAART Era: Impact of Immunosuppression. JAIDS Journal Of Acquired Immune Deficiency Syndromes 2009, 52: 203-208. PMID: 19617846, PMCID: PMC2814969, DOI: 10.1097/qai.0b013e3181b033ab.Peer-Reviewed Original ResearchConceptsActive antiretroviral therapy (HAART) eraAntiretroviral therapy eraIncidence rate ratiosCD4 countTherapy eraAnal cancerLow CD4 countHigher CD4 countsMedian CD4 countImpact of immunosuppressionRate ratioCohort of veteransNon-AIDSNoninfected patientsHAART eraUninfected patientsHodgkin's lymphomaIncidence rateProstate cancerHIVPatientsCancerIndividual cancersMalignancyIncidence