2024
Biomarker development for PD-(L)1 axis inhibition: a consensus view from the SITC Biomarkers Committee
Monette A, Warren S, Barrett J, Garnett-Benson C, Schalper K, Taube J, Topp B, Snyder A. Biomarker development for PD-(L)1 axis inhibition: a consensus view from the SITC Biomarkers Committee. Journal For ImmunoTherapy Of Cancer 2024, 12: e009427. PMID: 39032943, PMCID: PMC11261685, DOI: 10.1136/jitc-2024-009427.Peer-Reviewed Original ResearchConceptsProgrammed cell death protein 1/programmed death-ligand 1PD-(L)1Biomarker developmentApplication of novel biomarkersPD-(L)1 therapyDeath-ligand 1Patient selection strategiesCombination therapyTumor typesTreatment optionsImmune biologyAxis inhibitionEffective treatmentCancer progressionNovel biomarkersPatientsTherapyImmunotherapyBiomarkersKnowledge of mechanismsDelivery of effective treatmentTreatmentAgentsTumorProgressionHigh-throughput transcriptome profiling indicates ribosomal RNAs to be associated with resistance to immunotherapy in non-small cell lung cancer (NSCLC)
Moutafi M, Bates K, Aung T, Milian R, Xirou V, Vathiotis I, Gavrielatou N, Angelakis A, Schalper K, Salichos L, Rimm D. High-throughput transcriptome profiling indicates ribosomal RNAs to be associated with resistance to immunotherapy in non-small cell lung cancer (NSCLC). Journal For ImmunoTherapy Of Cancer 2024, 12: e009039. PMID: 38857914, PMCID: PMC11168162, DOI: 10.1136/jitc-2024-009039.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerImmune checkpoint inhibitorsProgrammed cell death protein 1Associated with OSCell lung cancerTissue microarray spotsTissue microarrayValidation cohortLung cancerNon-small cell lung cancer treated with immune checkpoint inhibitorsAssociated with resistance to immunotherapyCell death protein 1Resistance to immunotherapyAssociated with PFSProgression-free survivalSecreted frizzled-related protein 2Cox proportional-hazards model analysisCheckpoint inhibitorsImmunotherapy strategiesTumor compartmentsRetrospective cohortDiscovery cohortLong-term benefitsPatientsCD68Spatially resolved tissue imaging to analyze the tumor immune microenvironment: beyond cell-type densities
Janeiro A, Wong E, Jiménez-Sánchez D, de Solorzano C, Lozano M, Teijeira A, Schalper K, Melero I, De Andrea C. Spatially resolved tissue imaging to analyze the tumor immune microenvironment: beyond cell-type densities. Journal For ImmunoTherapy Of Cancer 2024, 12: e008589. PMID: 38821717, PMCID: PMC11149121, DOI: 10.1136/jitc-2023-008589.Peer-Reviewed Original ResearchUp-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity
Zhang T, Yu W, Cheng X, Yeung J, Ahumada V, Norris P, Pearson M, Yang X, van Deursen W, Halcovich C, Nassar A, Vesely M, Zhang Y, Zhang J, Ji L, Flies D, Liu L, Langermann S, LaRochelle W, Humphrey R, Zhao D, Zhang Q, Zhang J, Gu R, Schalper K, Sanmamed M, Chen L. Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity. Science Immunology 2024, 9: eadh2334. PMID: 38669316, DOI: 10.1126/sciimmunol.adh2334.Peer-Reviewed Original ResearchConceptsT cell infiltrationT cell exclusionT cellsResistance to anti-PD-1 immunotherapyPoor T-cell infiltrationAnti-PD-1 immunotherapyImmunogenic mouse tumorsT cell mobilizationHuman cancer tissuesTherapeutic immunotherapyCancer immunotherapyMouse tumorsChemokine systemImmunotherapyTumor tissuesImpaired infiltrationTumorLipid metabolitesHuman cancersCancer tissuesInfiltrationA2 groupCancerPLA2G10Up-regulatedVascular mimicry as a facilitator of melanoma brain metastasis
Provance O, Oria V, Tran T, Caulfield J, Zito C, Aguirre-Ducler A, Schalper K, Kluger H, Jilaveanu L. Vascular mimicry as a facilitator of melanoma brain metastasis. Cellular And Molecular Life Sciences 2024, 81: 188. PMID: 38635031, PMCID: PMC11026261, DOI: 10.1007/s00018-024-05217-z.Peer-Reviewed Original ResearchConceptsVascular mimicryBrain metastasesMouse model of metastatic melanomaIncreased risk of metastasisAssociated with tumor volumeMelanoma brain metastasesRisk of metastasisSurvival of miceFuture treatment regimensCell line modelsTumor suppressor pathwayMetastatic melanomaTumor volumeSolid tumorsTreatment regimensTumor typesPoor prognosisHippo tumor suppressor pathwayIncreased riskMouse modelDownstream targets YAPMelanomaMetastasisSuppressor pathwayTumor
2023
Digital spatial profiling of melanoma shows CD95 expression in immune cells is associated with resistance to immunotherapy
Martinez-Morilla S, Moutafi M, Fernandez A, Jessel S, Divakar P, Wong P, Garcia-Milian R, Schalper K, Kluger H, Rimm D. Digital spatial profiling of melanoma shows CD95 expression in immune cells is associated with resistance to immunotherapy. OncoImmunology 2023, 12: 2260618. PMID: 37781235, PMCID: PMC10540659, DOI: 10.1080/2162402x.2023.2260618.Peer-Reviewed Original ResearchConceptsDigital spatial profilingImmune checkpoint inhibitor therapyShorter progression-free survivalQuantitative immunofluorescenceCheckpoint inhibitor therapyProgression-free survivalMetastatic melanoma patientsPre-treatment specimensIndependent validation cohortMetastatic melanoma casesAdjuvant settingNanoString GeoMxMultivariable adjustmentAdverse eventsImmunotherapy cohortInhibitor therapyPD-L1Immune markersMelanoma patientsUnivariable analysisValidation cohortImmune cellsMelanoma casesMultiplex immunofluorescenceCD95 expressionThe β1-adrenergic receptor links sympathetic nerves to T cell exhaustion
Globig A, Zhao S, Roginsky J, Maltez V, Guiza J, Avina-Ochoa N, Heeg M, Araujo Hoffmann F, Chaudhary O, Wang J, Senturk G, Chen D, O’Connor C, Pfaff S, Germain R, Schalper K, Emu B, Kaech S. The β1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 2023, 622: 383-392. PMID: 37731001, PMCID: PMC10871066, DOI: 10.1038/s41586-023-06568-6.Peer-Reviewed Original ResearchConceptsImmune checkpoint blockadeCell exhaustionExhausted CD8Sympathetic nervesT cell exhaustionSympathetic stress responsePancreatic cancer modelAnti-tumor functionCheckpoint blockadeCatecholamine levelsTissue innervationCytokine productionChronic antigenMalignant diseaseChronic infectionCD8Immune responseAdrenergic signalingEffector functionsΒ-blockersViral infectionCancer modelExhausted stateCell responsesCell functionInternational Association for the Study of Lung Cancer Study of Reproducibility in Assessment of Pathologic Response in Resected Lung Cancers After Neoadjuvant Therapy
Dacic S, Travis W, Redman M, Saqi A, Cooper W, Borczuk A, Chung J, Glass C, Lopez J, Roden A, Sholl L, Weissferdt A, Posadas J, Walker A, Zhu H, Wijeratne M, Connolly C, Wynes M, Bota-Rabassedas N, Sanchez-Espiridion B, Lee J, Berezowska S, Chou T, Kerr K, Nicholson A, Poleri C, Schalper K, Tsao M, Carbone D, Ready N, Cascone T, Heymach J, Sepesi B, Shu C, Rizvi N, Sonett J, Altorki N, Provencio M, Bunn P, Kris M, Belani C, Kelly K, Wistuba I, Committee I. International Association for the Study of Lung Cancer Study of Reproducibility in Assessment of Pathologic Response in Resected Lung Cancers After Neoadjuvant Therapy. Journal Of Thoracic Oncology 2023, 18: 1290-1302. PMID: 37702631, DOI: 10.1016/j.jtho.2023.07.017.Peer-Reviewed Original ResearchConceptsPathologic responseViable tumorNeoadjuvant therapyLung cancerClinical trialsInter-rater agreementNeoadjuvant immune checkpoint inhibitorsClinical trial end pointsResected Lung CancerImmune checkpoint inhibitorsTrial end pointsInvasive mucinous adenocarcinomaResidual viable tumorTumor bed areaEosin-stained slidesLung cancer studiesCheckpoint inhibitorsNeoadjuvant treatmentMucinous adenocarcinomaPathologic evaluationStromal inflammationPulmonary pathologistsTumor bedLung tumorsCommon reasonAtezolizumab plus stereotactic ablative radiotherapy for medically inoperable patients with early-stage non-small cell lung cancer: a multi-institutional phase I trial
Monjazeb A, Daly M, Luxardi G, Maverakis E, Merleev A, Marusina A, Borowsky A, Mirhadi A, Shiao S, Beckett L, Chen S, Eastham D, Li T, Vick L, McGee H, Lara F, Garcia L, Morris L, Canter R, Riess J, Schalper K, Murphy W, Kelly K. Atezolizumab plus stereotactic ablative radiotherapy for medically inoperable patients with early-stage non-small cell lung cancer: a multi-institutional phase I trial. Nature Communications 2023, 14: 5332. PMID: 37658083, PMCID: PMC10474145, DOI: 10.1038/s41467-023-40813-w.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerStereotactic ablative radiotherapyEarly-stage non-small cell lung cancerCell lung cancerAblative radiotherapyLung cancerMulti-institutional phase I trialSingle-arm phase IThird of patientsPhase I trialEx vivo stimulationT cell activationInoperable patientsPrimary endpointSecondary endpointsEfficacy signalsI trialT cellsAdaptive immunityCell activationPatientsPhase IPhase IIIEarly responseAtezolizumabQuantitative DNA Repair Biomarkers and Immune Profiling for Temozolomide and Olaparib in Metastatic Colorectal Cancer
Cecchini M, Zhang J, Wei W, Sklar J, Lacy J, Zhong M, Kong Y, Zhao H, DiPalermo J, Devine L, Stein S, Kortmansky J, Johung K, Bindra R, LoRusso P, Schalper K. Quantitative DNA Repair Biomarkers and Immune Profiling for Temozolomide and Olaparib in Metastatic Colorectal Cancer. Cancer Research Communications 2023, 3: 1132-1139. PMID: 37387791, PMCID: PMC10305782, DOI: 10.1158/2767-9764.crc-23-0045.Peer-Reviewed Original ResearchConceptsWhole-exome sequencingMGMT protein expressionColorectal cancerStable diseaseQuantitative immunofluorescenceT cellsProtein expressionPromoter hypermethylationLow MGMT protein expressionPARP inhibitorsRadiographic tumor regressionMetastatic colorectal cancerAdvanced colorectal cancerPretreatment tumor biopsiesEffector T cellsTumor-infiltrating lymphocytesMGMT proteinDNA repair biomarkersBaseline CD8Eligible patientsIncreased CD8Methylguanine-DNA methyltransferaseObjective responseProgressive diseaseImmune markersNCI 7977: A Phase I Dose-Escalation Study of Intermittent Oral ABT-888 (Veliparib) Plus Intravenous Irinotecan Administered in Patients with Advanced Solid Tumors
Cecchini M, Walther Z, Wei W, Hafez N, Pilat M, Boerner S, Durecki D, Eder J, Schalper K, Chen A, LoRusso P. NCI 7977: A Phase I Dose-Escalation Study of Intermittent Oral ABT-888 (Veliparib) Plus Intravenous Irinotecan Administered in Patients with Advanced Solid Tumors. Cancer Research Communications 2023, 3: 1113-1117. PMID: 37377610, PMCID: PMC10292219, DOI: 10.1158/2767-9764.crc-22-0485.Peer-Reviewed Original ResearchConceptsDose-limiting toxicityHomologous recombination deficiencyPARP inhibitorsStable diseaseWeekly irinotecanObjective responseDay 1Day 3Solid tumorsPhase I dose-escalation studyTwice daily days 1I dose-escalation studyPhase I clinical trialDaily days 1Dose level 1Doses of veliparibGrade 3 neutropeniaMultiple-dose schedulesProgression-free survivalAdvanced solid tumorsDose-escalation studyEvaluable patientsNonoverlapping toxicitiesDose scheduleSystemic treatmentDeveloping a definition of immune exclusion in cancer: results of a modified Delphi workshop
Clifton G, Rothenberg M, Ascierto P, Begley G, Cecchini M, Eder J, Ghiringhelli F, Italiano A, Kochetkova M, Li R, Mechta-Grigoriou F, Pai S, Provenzano P, Puré E, Ribas A, Schalper K, Fridman W. Developing a definition of immune exclusion in cancer: results of a modified Delphi workshop. Journal For ImmunoTherapy Of Cancer 2023, 11: e006773. PMID: 37290925, PMCID: PMC10254706, DOI: 10.1136/jitc-2023-006773.Peer-Reviewed Original ResearchConceptsImmune exclusionTumor microenvironmentCheckpoint inhibitorsImmune checkpoint inhibitorsMinority of patientsT cell infiltrationPoor clinical outcomeImmune regulatory pathwaysEffective treatment approachDevelopment of treatmentsVariety of cancersLack of responseCheckpoint therapyImmune profileClinical outcomesClinical benefitPatient outcomesCancer expertsCancer histologyT cellsConsensus definitionTreatment approachesCancer typesRound questionnaireDelphi processGenomic and transcriptomic analysis of checkpoint blockade response in advanced non-small cell lung cancer
Ravi A, Hellmann M, Arniella M, Holton M, Freeman S, Naranbhai V, Stewart C, Leshchiner I, Kim J, Akiyama Y, Griffin A, Vokes N, Sakhi M, Kamesan V, Rizvi H, Ricciuti B, Forde P, Anagnostou V, Riess J, Gibbons D, Pennell N, Velcheti V, Digumarthy S, Mino-Kenudson M, Califano A, Heymach J, Herbst R, Brahmer J, Schalper K, Velculescu V, Henick B, Rizvi N, Jänne P, Awad M, Chow A, Greenbaum B, Luksza M, Shaw A, Wolchok J, Hacohen N, Getz G, Gainor J. Genomic and transcriptomic analysis of checkpoint blockade response in advanced non-small cell lung cancer. Nature Genetics 2023, 55: 807-819. PMID: 37024582, PMCID: PMC10181943, DOI: 10.1038/s41588-023-01355-5.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerAdvanced non-small cell lung cancerCell lung cancerLung cancerAnti-PD-1/PD-L1 agentsCheckpoint blockade responsePD-L1 agentsTumor intrinsic subtypesCheckpoint inhibitorsCheckpoint blockadeTreatment landscapeImmunotherapy outcomesBlockade responseCohortBiological determinantsGenomic subgroupsEnhanced responseMolecular featuresWhole exomeCancerProminent associationOutcomesAssociationResponseNumber of associations
2022
Human Immunodeficiency Virus Is Associated With Poor Overall Survival Among Patients With Head and Neck Cancer
Salahuddin S, Cohen O, Wu M, Irizarry J, Vega T, Gan G, Deng Y, Isaeva N, Prasad M, Schalper K, Mehra S, Yarbrough W, Emu B. Human Immunodeficiency Virus Is Associated With Poor Overall Survival Among Patients With Head and Neck Cancer. Clinical Infectious Diseases 2022, 76: 1449-1458. PMID: 36520995, PMCID: PMC10319962, DOI: 10.1093/cid/ciac924.Peer-Reviewed Original ResearchConceptsOverall survivalIndependent predictorsHNSCC patientsWorse prognosisOropharyngeal tumorsCox proportional hazards regression modelMultivariate analysisHPV-positive oropharyngeal tumorsNeck squamous cell cancerProportional hazards regression modelsLower median overall survivalAcademic hospital centerNon-HIV populationMedian overall survivalPredictors of survivalSquamous cell cancerHuman immunodeficiency virusPoor clinical outcomeExpression of CD4Poor overall survivalHazards regression modelsRace/ethnicityCD8 infiltrationHazard ratioClinicopathologic characteristicsNSCLC Subtyping in Conventional Cytology: Results of the International Association for the Study of Lung Cancer Cytology Working Group Survey to Determine Specific Cytomorphologic Criteria for Adenocarcinoma and Squamous Cell Carcinoma
Jain D, Nambirajan A, Chen G, Geisinger K, Hiroshima K, Layfield L, Minami Y, Moreira A, Motoi N, Papotti M, Rekhtman N, Russell P, Prince S, Schmitt F, Yatabe Y, Eppenberger-Castori S, Bubendorf L, Beasley M, Berezowska S, Borczuk A, Brambilla E, Chou T, Chung J, Cooper W, Dacic S, Chan Y, Hirsch F, Hwang D, Joubert P, Kerr K, Lantuejoul S, Lin D, Lopez-Rios F, Matsubara D, Mino-Kenudson M, Nicholson A, Poleri C, Roden A, Schalper K, Sholl L, Thunnissen E, Travis W, Tsao M, Wistuba I, Chen G. NSCLC Subtyping in Conventional Cytology: Results of the International Association for the Study of Lung Cancer Cytology Working Group Survey to Determine Specific Cytomorphologic Criteria for Adenocarcinoma and Squamous Cell Carcinoma. Journal Of Thoracic Oncology 2022, 17: 793-805. PMID: 35331963, DOI: 10.1016/j.jtho.2022.02.013.Peer-Reviewed Original Research
2018
Spatially Resolved and Quantitative Analysis of VISTA/PD-1H as a Novel Immunotherapy Target in Human Non–Small Cell Lung Cancer
Villarroel-Espindola F, Yu X, Datar I, Mani N, Sanmamed M, Velcheti V, Syrigos K, Toki M, Zhao H, Chen L, Herbst RS, Schalper KA. Spatially Resolved and Quantitative Analysis of VISTA/PD-1H as a Novel Immunotherapy Target in Human Non–Small Cell Lung Cancer. Clinical Cancer Research 2018, 24: 1562-1573. PMID: 29203588, PMCID: PMC5884702, DOI: 10.1158/1078-0432.ccr-17-2542.Peer-Reviewed Original ResearchMeSH KeywordsAgedAntigens, CDAntigens, Differentiation, MyelomonocyticB7 AntigensB7-H1 AntigenBiomarkers, TumorCarcinoma, Non-Small-Cell LungCD8-Positive T-LymphocytesEvaluation Studies as TopicFemaleGene Expression Regulation, NeoplasticHumansImmunologic FactorsImmunotherapyLung NeoplasmsMaleMembrane ProteinsMutationProgrammed Cell Death 1 ReceptorRetrospective StudiesConceptsNon-small cell lung cancerHuman non-small cell lung cancerT helper cellsCytotoxic T cellsT cellsPD-1Localized expression patternQuantitative immunofluorescenceTumor-infiltrating lymphocytesCell lung cancerLung cancer casesGenomic analysisTissue microarray formatTumor-associated macrophagesPD-L1 proteinCytoplasmic staining patternClin Cancer ResExpression patternsLow mutational burdenTumor epithelial cellsSpecific genomic alterationsVISTA expressionVISTA proteinPD-L1Immunomodulatory roleClinical Features and Management of Acquired Resistance to PD-1 Axis Inhibitors in 26 Patients With Advanced Non–Small Cell Lung Cancer
Gettinger SN, Wurtz A, Goldberg SB, Rimm D, Schalper K, Kaech S, Kavathas P, Chiang A, Lilenbaum R, Zelterman D, Politi K, Herbst R. Clinical Features and Management of Acquired Resistance to PD-1 Axis Inhibitors in 26 Patients With Advanced Non–Small Cell Lung Cancer. Journal Of Thoracic Oncology 2018, 13: 831-839. PMID: 29578107, PMCID: PMC6485248, DOI: 10.1016/j.jtho.2018.03.008.Peer-Reviewed Original ResearchConceptsPD-1 axis inhibitorsNon-small cell lung cancerAdvanced non-small cell lung cancerCell lung cancerInhibitor therapyLocal therapyLymph nodesLung cancerSurvival rateSolid Tumors v1.1Response Evaluation CriteriaSite of diseaseProgression of diseaseProgressive diseaseClinical patternLN metastasisSuch patientsClinical featuresMedian timeRadiographic featuresTumor regressionProlonged benefitPatientsTherapyResponse criteriaMolecular Determinants of Response to Anti–Programmed Cell Death (PD)-1 and Anti–Programmed Death-Ligand (PD-L)-Ligand 1 Blockade in Patients With Non–Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing
Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, Hollmann T, Schalper KA, Gainor JF, Shen R, Ni A, Arbour KC, Merghoub T, Wolchok J, Snyder A, Chaft JE, Kris MG, Rudin CM, Socci ND, Berger MF, Taylor BS, Zehir A, Solit DB, Arcila ME, Ladanyi M, Riely GJ, Schultz N, Hellmann MD. Molecular Determinants of Response to Anti–Programmed Cell Death (PD)-1 and Anti–Programmed Death-Ligand (PD-L)-Ligand 1 Blockade in Patients With Non–Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. Journal Of Clinical Oncology 2018, 36: jco.2017.75.338. PMID: 29337640, PMCID: PMC6075848, DOI: 10.1200/jco.2017.75.3384.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsDurable clinical benefitTumor mutation burdenPD-L1 expressionCell lung cancerTargeted Next-Generation SequencingWhole-exome sequencingLung cancerNext-generation sequencingPartial response/stable diseaseUse of ICIsAnti-programmed death-1Response/stable diseaseSolid Tumors version 1.1Anti-programmed cell deathProgression-free survivalResponse Evaluation CriteriaSubset of patientsPredictors of responseMultivariable predictive modelDetailed clinical annotationLack of benefitStable diseaseCheckpoint inhibitorsDurable responses
2017
Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer
Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, Wurtz A, Dong W, Cai G, Melnick MA, Du VY, Schlessinger J, Goldberg SB, Chiang A, Sanmamed MF, Melero I, Agorreta J, Montuenga LM, Lifton R, Ferrone S, Kavathas P, Rimm DL, Kaech SM, Schalper K, Herbst RS, Politi K. Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discovery 2017, 7: cd-17-0593. PMID: 29025772, PMCID: PMC5718941, DOI: 10.1158/2159-8290.cd-17-0593.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsPatient-derived xenograftsHLA class ILung cancerClass ICell surface HLA class ILung cancer mouse modelPD-1 blockadeStandard treatment algorithmCancer mouse modelLung cancer samplesDefective antigen processingCheckpoint inhibitorsPD-1Treatment algorithmMouse modelAntagonistic antibodiesDiverse malignanciesAntigen processingCancer samplesB2MHomozygous lossTumorsCancerRecurrent mutationsPrediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images
Wang X, Janowczyk A, Zhou Y, Thawani R, Fu P, Schalper K, Velcheti V, Madabhushi A. Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images. Scientific Reports 2017, 7: 13543. PMID: 29051570, PMCID: PMC5648794, DOI: 10.1038/s41598-017-13773-7.Peer-Reviewed Original ResearchMeSH KeywordsAgedArea Under CurveCarcinoma, Non-Small-Cell LungCell NucleusCohort StudiesDiscriminant AnalysisFemaleHumansKaplan-Meier EstimateLung NeoplasmsMaleMiddle AgedNeoplasm Recurrence, LocalNeoplasm StagingPrognosisProportional Hazards ModelsRetrospective StudiesROC CurveTissue Array AnalysisConceptsNon-small cell lung cancerEarly-stage non-small cell lung cancerStage non-small cell lung cancerEarly-stage NSCLC patientsStage NSCLC patientsCell lung cancerPrediction of recurrenceDisease recurrenceNSCLC patientsLung cancerTissue microarrayMultivariable Cox proportional hazards modelsCox proportional hazards modelTraditional prognostic variablesIndependent prognostic factorIdentification of patientsProportional hazards modelAdjuvant therapyNodal statusPrognostic factorsRetrospective cohortValidation cohortTraining cohortPrognostic variablesHigh risk