2024
X-linked deletion of Crossfirre, Firre, and Dxz4 in vivo uncovers diverse phenotypes and combinatorial effects on autosomes
Hasenbein T, Hoelzl S, Smith Z, Gerhardinger C, Gonner M, Aguilar-Pimentel A, Amarie O, Becker L, Calzada-Wack J, Dragano N, da Silva-Buttkus P, Garrett L, Hölter S, Kraiger M, Östereicher M, Rathkolb B, Sanz-Moreno A, Spielmann N, Wurst W, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Meissner A, Engelhardt S, Rinn J, Andergassen D. X-linked deletion of Crossfirre, Firre, and Dxz4 in vivo uncovers diverse phenotypes and combinatorial effects on autosomes. Nature Communications 2024, 15: 10631. PMID: 39638999, PMCID: PMC11621363, DOI: 10.1038/s41467-024-54673-5.Peer-Reviewed Original ResearchConceptsAutosomal gene regulationRegions genome-wideAllele-specific analysisSex-specific lociLoci in vivoX-linked genesRandom X-chromosome inactivationX-chromosome inactivationSex-specific phenotypesFirre locusGenome-wideIn vivo roleChromatin structureGene regulationX chromosomeEpigenetic featuresDXZ4Epigenetic profilesKnockout studiesLociDiverse phenotypesLncRNA FIRREFunctional roleCombinatorial effectsFIRREDNA methylation in mammalian development and disease
Smith Z, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nature Reviews Genetics 2024, 1-24. PMID: 39134824, DOI: 10.1038/s41576-024-00760-8.Peer-Reviewed Original ResearchLong-read sequencing technologiesDNA methylation fieldDNA methylation landscapeGenome functionMethylation landscapeSequencing technologiesEpigenetic codeGenomic characterizationRegulatory layerDNA methylationCell physiologyMammalian developmentMammalian lifespanGenetic featuresFunctional understandingSingle-cellDNAMechanistic discoveriesSomatic transitionsPhases of discoveryDevelopmental potentialDiscoveryPhenotypeSenescencePhysiologyReconstructing axial progenitor field dynamics in mouse stem cell-derived embryoids
Bolondi A, Law B, Kretzmer H, Gassaloglu S, Buschow R, Riemenschneider C, Yang D, Walther M, Veenvliet J, Meissner A, Smith Z, Chan M. Reconstructing axial progenitor field dynamics in mouse stem cell-derived embryoids. Developmental Cell 2024, 59: 1489-1505.e14. PMID: 38579718, PMCID: PMC11187653, DOI: 10.1016/j.devcel.2024.03.024.Peer-Reviewed Original ResearchNeuro-mesodermal progenitorsFate outcomesStem cell-based modelsEmbryonic trunkEnvironmental cuesMorphological phenotypesDownstream lineagesMolecular recordCell-based modelsCell typesTranscriptional signatureComplex tissuesAxial progenitorsLineagesDevelopmental timeNeural lineagesTransient progenitor populationProgenitor populationsDevelopmental windowPhylogenyAutonomous transposons tune their sequences to ensure somatic suppression
Ilık İ, Glažar P, Tse K, Brändl B, Meierhofer D, Müller F, Smith Z, Aktaş T. Autonomous transposons tune their sequences to ensure somatic suppression. Nature 2024, 626: 1116-1124. PMID: 38355802, PMCID: PMC10901741, DOI: 10.1038/s41586-024-07081-0.Peer-Reviewed Original ResearchConceptsTransposable elementsSAFB proteinsPiwi-interacting RNA pathwayRNA-basedIntronic transposed elementsRNA processing signalsPre-mRNA processingIntronic spaceNested genesPostmeiotic spermatidsAutonomous transposonsDNA transposonsRNA pathwaysCassette exonsSplicing codeSplicing eventsGenome integrityTE exonizationHuman genesL1 elementsRNA synthesisHost genesTissue-specificSAFBSomatic cells
2023
Self-patterning of human stem cells into post-implantation lineages
Pedroza M, Gassaloglu S, Dias N, Zhong L, Hou T, Kretzmer H, Smith Z, Sozen B. Self-patterning of human stem cells into post-implantation lineages. Nature 2023, 622: 574-583. PMID: 37369348, PMCID: PMC10584676, DOI: 10.1038/s41586-023-06354-4.Peer-Reviewed Original ResearchConceptsStem cellsPlacental cell typesPost-implantation embryonic developmentHuman pluripotent stem cellsPluripotent stem cellsHuman embryonic developmentEmbryonic developmentHuman stem cellsCongenital pathologyPost-implantation epiblastDiverse cell statesSingle-cell transcriptomicsAmniotic ectodermExtra-embryonic endodermSpontaneous differentiationSignaling hubThree-dimensional structureSecreted modulatorsCell types
2022
Hijacking of transcriptional condensates by endogenous retroviruses
Asimi V, Sampath Kumar A, Niskanen H, Riemenschneider C, Hetzel S, Naderi J, Fasching N, Popitsch N, Du M, Kretzmer H, Smith ZD, Weigert R, Walther M, Mamde S, Meierhofer D, Wittler L, Buschow R, Timmermann B, Cisse II, Ameres SL, Meissner A, Hnisz D. Hijacking of transcriptional condensates by endogenous retroviruses. Nature Genetics 2022, 54: 1238-1247. PMID: 35864192, PMCID: PMC9355880, DOI: 10.1038/s41588-022-01132-w.Peer-Reviewed Original ResearchConceptsTranscriptional condensatesEndogenous retrovirusesMurine embryonic stem cellsSingle-cell RNA-seq analysisKnockout mouse embryosRNA-seq analysisEmbryonic stem cellsMost endogenous retrovirusesERV RNAsPhase-separated dropletsNascent RNAPluripotency genesPluripotent lineageRNA polymeraseTranscription factorsReconstitution systemTriggers dissociationERV lociMouse embryosMediator coactivatorSelective degradationDisease contextsStem cellsRNASpecific depletion
2021
Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages
Andergassen D, Smith ZD, Kretzmer H, Rinn JL, Meissner A. Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages. Developmental Cell 2021, 56: 2995-3005.e4. PMID: 34752748, PMCID: PMC9463566, DOI: 10.1016/j.devcel.2021.10.010.Peer-Reviewed Original ResearchConceptsX-chromosome inactivationGenomic imprintingEpigenetic mechanismsEpigenetic pathwaysIndependent gene clustersPolycomb group repressorsDiverse epigenetic mechanismsDistinct gene setsAllele-specific expressionH3K9 methyltransferase G9aAutosomal imprintingChromosomal scaleExtraembryonic lineagesParental imprintsPlacental lineagesGene clusterChromosome inactivationEutherian mammalsMethyltransferase G9aDNA methylationExtraembryonic ectodermGene setsSingle locusX chromosomeDistinct domainsSmart-RRBS for single-cell methylome and transcriptome analysis
Gu H, Raman AT, Wang X, Gaiti F, Chaligne R, Mohammad AW, Arczewska A, Smith ZD, Landau DA, Aryee MJ, Meissner A, Gnirke A. Smart-RRBS for single-cell methylome and transcriptome analysis. Nature Protocols 2021, 16: 4004-4030. PMID: 34244697, PMCID: PMC8672372, DOI: 10.1038/s41596-021-00571-9.Peer-Reviewed Original ResearchConceptsSingle cellsProtein-coding genesSingle-cell methylomesSame single cellMulti-omics approachRare cell populationsSmart-seq2Transcriptional statesDNA methylomeTranscriptome analysisImportant mechanistic insightsEpigenetic modificationsDNA methylationDissected tissue samplesGenomic DNAHundreds of cellsCellular heterogeneityFlow sortingRegulatory consequencesMethylomeEpigenetic promoterMechanistic insightsCell populationsCellsTypical single cell
2020
Epigenetic regulator function through mouse gastrulation
Grosswendt S, Kretzmer H, Smith ZD, Kumar AS, Hetzel S, Wittler L, Klages S, Timmermann B, Mukherji S, Meissner A. Epigenetic regulator function through mouse gastrulation. Nature 2020, 584: 102-108. PMID: 32728215, PMCID: PMC7415732, DOI: 10.1038/s41586-020-2552-x.Peer-Reviewed Original ResearchConceptsMutant phenotypePolycomb Repressive Complex 1Single-cell RNA sequencingComplex mutant phenotypesSingle totipotent cellRepressive Complex 1Mutant mouse embryosSpecific transcription factorsMouse gastrulationTranscriptional informationEpigenetic machineryHistone residuesMolecular functionsCellular diversityTotipotent cellsTranscriptional changesTranscription factorsEssential regulatorRNA sequencingDevelopmental roleMouse embryosGenetic templatesRegulator functionSubstantial cooperativityGastrulationTETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers
Charlton J, Jung EJ, Mattei AL, Bailly N, Liao J, Martin EJ, Giesselmann P, Brändl B, Stamenova EK, Müller FJ, Kiskinis E, Gnirke A, Smith ZD, Meissner A. TETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers. Nature Genetics 2020, 52: 819-827. PMID: 32514123, PMCID: PMC7415576, DOI: 10.1038/s41588-020-0639-9.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCell LineDNA (Cytosine-5-)-MethyltransferasesDNA MethylationDNA Methyltransferase 3AEmbryonic Stem CellsEnhancer Elements, GeneticEpigenesis, GeneticGene Expression Regulation, DevelopmentalGerm LayersHumansMiceMice, KnockoutMixed Function OxygenasesPluripotent Stem CellsProto-Oncogene ProteinsConceptsPluripotent cellsHuman embryonic stem cell linesEmbryonic stem cell linesDNA methylation landscapeEpiblast stem cellsStem cell linesGlobal methylation levelsMethylation landscapeMouse ESCsMammalian cellsRegulatory sequencesDNA methylationSomatic tissuesNegative regulatorTET expressionMethylation levelsDynamic locusStem cellsCell linesLociDemethylationRegulatorEnhancerCellsTet
2019
In vivo Firre and Dxz4 deletion elucidates roles for autosomal gene regulation
Andergassen D, Smith ZD, Lewandowski JP, Gerhardinger C, Meissner A, Rinn JL. In vivo Firre and Dxz4 deletion elucidates roles for autosomal gene regulation. ELife 2019, 8: e47214. PMID: 31738164, PMCID: PMC6860989, DOI: 10.7554/elife.47214.Peer-Reviewed Original ResearchConceptsX-chromosome inactivationAutosomal gene regulationGene regulationDouble deletionOrgan-specific mannerChromosome inactivationGene setsX chromosomeTranscriptional effectsExpression signaturesLociCell linesDeletionGenesRegulationVivo contributionRecent evidenceMegadomainsAutosomesFIRREMutantsChromosomesMain driversBiologySuperloopsDifferential regulation of OCT4 targets facilitates reacquisition of pluripotency
Thakurela S, Sindhu C, Yurkovsky E, Riemenschneider C, Smith ZD, Nachman I, Meissner A. Differential regulation of OCT4 targets facilitates reacquisition of pluripotency. Nature Communications 2019, 10: 4444. PMID: 31570708, PMCID: PMC6768871, DOI: 10.1038/s41467-019-11741-5.Peer-Reviewed Original ResearchConceptsEctopic transcription factorsReacquisition of pluripotencySomatic cell reprogrammingCis-regulatory elementsTranscription factor expressionExact molecular mechanismsOCT4 targetsPluripotent stem cellsPluripotency inductionCell reprogrammingTranscription factorsSomatic cellsMolecular mechanismsDifferential regulationPluripotencyStem cellsVivo differentiationPrimary targetCellsFactor expressionFinal stepExperimental systemReprogrammingTargetDifferentiationLoss of DNA methyltransferase activity in primed human ES cells triggers increased cell-cell variability and transcriptional repression
Tsankov AM, Wadsworth MH, Akopian V, Charlton J, Allon SJ, Arczewska A, Mead BE, Drake RS, Smith ZD, Mikkelsen TS, Shalek AK, Meissner A. Loss of DNA methyltransferase activity in primed human ES cells triggers increased cell-cell variability and transcriptional repression. Development 2019, 146: dev174722. PMID: 31515224, PMCID: PMC6803377, DOI: 10.1242/dev.174722.Peer-Reviewed Original ResearchMeSH KeywordsCell CycleCell DifferentiationDNA (Cytosine-5-)-Methyltransferase 1DNA (Cytosine-5-)-MethyltransferasesDNA MethylationDNA Methyltransferase 3AEnhancer Elements, GeneticEntropyGene Expression Regulation, DevelopmentalHuman Embryonic Stem CellsHumansMaleRepressor ProteinsRNA, MessengerTranscription, GeneticConceptsGlobal methylation levelsTranscriptional repressionSingle-cell RNA-sequencing dataMethylation levelsNew cell fatesMaintenance of pluripotencyHuman embryonic stem cellsMethylation of cytosineRNA-sequencing dataCell-cell variabilityStem cellsEmbryonic stem cellsHuman pluripotent stem cellsDNA methyltransferase activityMRNA expression dataPluripotent stem cellsTranscriptional variabilityMethyltransferases Dnmt3aCell fateEpigenetic regulatorsMethyltransferase DNMT3AExtrinsic signalsHigh-resolution viewMethyltransferase activityProper differentiationMolecular recording of mammalian embryogenesis
Chan MM, Smith ZD, Grosswendt S, Kretzmer H, Norman TM, Adamson B, Jost M, Quinn JJ, Yang D, Jones MG, Khodaverdian A, Yosef N, Meissner A, Weissman JS. Molecular recording of mammalian embryogenesis. Nature 2019, 570: 77-82. PMID: 31086336, PMCID: PMC7229772, DOI: 10.1038/s41586-019-1184-5.Peer-Reviewed Original ResearchConceptsCell fate mapsComplex multicellular organismsSingle totipotent cellSingle-cell readoutsSingle-cell RNA sequencing profilesEmbryonic progenitor cellsMulticellular organismsMammalian embryogenesisTranscriptional convergenceRNA sequencing profilesTotipotent cellsInternal gestationMammalian systemsAsymmetric partitioningMolecular recordersEndodermal cellsLineage tracerDevelopmental processesLineage informationMolecular recordingSequencing profilesEmbryonic originDifferent tissue typesProgenitor cellsTissue types
2018
Targets and genomic constraints of ectopic Dnmt3b expression
Zhang Y, Charlton J, Karnik R, Beerman I, Smith ZD, Gu H, Boyle P, Mi X, Clement K, Pop R, Gnirke A, Rossi DJ, Meissner A. Targets and genomic constraints of ectopic Dnmt3b expression. ELife 2018, 7: e40757. PMID: 30468428, PMCID: PMC6251628, DOI: 10.7554/elife.40757.Peer-Reviewed Original ResearchConceptsDNA methylationCpG islandsDe novo DNA methyltransferase DNMT3BCertain CpG islandsDNA methyltransferase DNMT3BGenome-wide dataCpG island hypermethylationDifferent cell typesMammalian genomesChromatin landscapeGenomic constraintsTranscriptional statesCancer methylomeMethyltransferase DNMT3BBisulfite sequencingGenomic targetsIsland hypermethylationResponsible enzymeDNMT3B expressionAberrant methylationDNMT3BMethylationCell typesH3K27me3Essential roleGlobal delay in nascent strand DNA methylation
Charlton J, Downing TL, Smith ZD, Gu H, Clement K, Pop R, Akopian V, Klages S, Santos DP, Tsankov AM, Timmermann B, Ziller MJ, Kiskinis E, Gnirke A, Meissner A. Global delay in nascent strand DNA methylation. Nature Structural & Molecular Biology 2018, 25: 327-332. PMID: 29531288, PMCID: PMC5889353, DOI: 10.1038/s41594-018-0046-4.Peer-Reviewed Original ResearchMeSH KeywordsCell CycleCell ProliferationCpG IslandsCytosineDNADNA (Cytosine-5-)-MethyltransferasesDNA MethylationDNA Methyltransferase 3ADNA ReplicationEmbryonic Stem CellsEpigenesis, GeneticGene Expression RegulationGenome, HumanHCT116 CellsHumansMaleMethylationMitosisMotor NeuronsNeoplasmsSequence Analysis, RNATranscription FactorsConceptsCytosine methylationCpG methylationGenome-wide bisulfite sequencingCis-regulatory elementsEmbryonic stem cellsCancer cell line HCT116Cell cycle arrestEpigenetic informationMammalian developmentGene regulationMitotic transmissionEpigenetic heterogeneityEpigenetic roleBisulfite sequencingCell line HCT116DNA methylationHuman cellsMethylationHeterogeneous methylationStem cellsCellsBrdU labelingPronounced lagGlobal reductionImmunoprecipitationGenetic determinants and epigenetic effects of pioneer-factor occupancy
Donaghey J, Thakurela S, Charlton J, Chen JS, Smith ZD, Gu H, Pop R, Clement K, Stamenova EK, Karnik R, Kelley DR, Gifford CA, Cacchiarelli D, Rinn JL, Gnirke A, Ziller MJ, Meissner A. Genetic determinants and epigenetic effects of pioneer-factor occupancy. Nature Genetics 2018, 50: 250-258. PMID: 29358654, PMCID: PMC6517675, DOI: 10.1038/s41588-017-0034-3.Peer-Reviewed Original ResearchMeSH KeywordsA549 CellsBinding SitesCell LineageCells, CulturedComputational BiologyDNAEpigenesis, GeneticEpistasis, GeneticGATA4 Transcription FactorGene Expression RegulationGene Regulatory NetworksGenes, SwitchHEK293 CellsHep G2 CellsHepatocyte Nuclear Factor 3-betaHumansOctamer Transcription Factor-3Protein BindingTranscription FactorsConceptsCell typesAlternative cell typesGenomic occupancyDNA accessibilityPioneer factorsDNA replicationDNA methylationDNA sequencesEpigenetic effectsGene expressionDevelopmental transitionsMolecular componentsGenetic determinantsFOXA2TF activityGATA4Specific bindingExpressionSubsequent lossOccupancyEnrichmentMethylationLociLow enrichmentBinding
2017
Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer
Smith ZD, Shi J, Gu H, Donaghey J, Clement K, Cacchiarelli D, Gnirke A, Michor F, Meissner A. Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature 2017, 549: 543-547. PMID: 28959968, PMCID: PMC5789792, DOI: 10.1038/nature23891.Peer-Reviewed Original Research
2016
Probabilistic Modeling of Reprogramming to Induced Pluripotent Stem Cells
Liu LL, Brumbaugh J, Bar-Nur O, Smith Z, Stadtfeld M, Meissner A, Hochedlinger K, Michor F. Probabilistic Modeling of Reprogramming to Induced Pluripotent Stem Cells. Cell Reports 2016, 17: 3395-3406. PMID: 28009305, PMCID: PMC5467646, DOI: 10.1016/j.celrep.2016.11.080.Peer-Reviewed Original ResearchMolecular features of cellular reprogramming and development
Smith ZD, Sindhu C, Meissner A. Molecular features of cellular reprogramming and development. Nature Reviews Molecular Cell Biology 2016, 17: 139-154. PMID: 26883001, DOI: 10.1038/nrm.2016.6.Peer-Reviewed Original ResearchConceptsKrüppel-like factor 4Pluripotent stateSRY-box 2Somatic cellsDirect reprogrammingInduced pluripotent stem cell generationDifferentiated cellsPluripotent stem cell generationCis-regulatory elementsStem cell generationAdditional molecular featuresMolecular featuresPluripotent stem cellsChromatin remodellersBivalent chromatinEpigenetic barriersDevelopmental genesCellular identityCellular reprogrammingGenetic modulesEpigenetic regulationCompact chromatinTranscriptional inductionEpigenetic repressorEpigenetic modifiers