Xiaoyang Cheng
Research ScientistCards
About
Titles
Research Scientist
Biography
Appointments
Neurology
Research ScientistPrimary
Other Departments & Organizations
Research
Publications
2024
Nav1.8 in small dorsal root ganglion neurons contributes to vincristine-induced mechanical allodynia
Nascimento de Lima A, Zhang H, Chen L, Effraim P, Gomis-Perez C, Cheng X, Huang J, Waxman S, Dib-Hajj S. Nav1.8 in small dorsal root ganglion neurons contributes to vincristine-induced mechanical allodynia. Brain 2024, 147: 3157-3170. PMID: 38447953, DOI: 10.1093/brain/awae071.Peer-Reviewed Original ResearchDorsal root ganglion neuronsDorsal root ganglionVincristine-induced mechanical allodyniaVincristine-induced peripheral neuropathyMechanical allodyniaVincristine treatmentNav1.8 channelsSmall dorsal root ganglion neuronsDevelopment of mechanical allodyniaTTX-R current densityVoltage-gated sodium channel Nav1.6Vincristine-treated animalsCurrent-clamp recordingsSodium channel Nav1.8Voltage-clamp recordingsReducing current thresholdSodium channel Nav1.6Investigate pathophysiological mechanismsTTX-RHyperpolarizing shiftRoot ganglionAllodyniaGanglion neuronsVincristine administrationPeripheral neuropathyTRPM8 mutations associated with persistent ocular pain after refractive surgery: D665N and V915M
Ghovanloo M, Effraim P, Tyagi S, Cheng X, Yuan J, Schulman B, Jacobs D, Dib-Hajj S, Waxman S. TRPM8 mutations associated with persistent ocular pain after refractive surgery: D665N and V915M. Biophysical Journal 2024, 123: 391a. DOI: 10.1016/j.bpj.2023.11.2376.Peer-Reviewed Original Research
2023
Genetic, electrophysiological, and pathological studies on patients with SCN9A‐related pain disorders
Yuan J, Cheng X, Matsuura E, Higuchi Y, Ando M, Hashiguchi A, Yoshimura A, Nakachi R, Mine J, Taketani T, Maeda K, Kawakami S, Kira R, Tanaka S, Kanai K, Dib‐Hajj F, Dib‐Hajj S, Waxman S, Takashima H. Genetic, electrophysiological, and pathological studies on patients with SCN9A‐related pain disorders. Journal Of The Peripheral Nervous System 2023, 28: 597-607. PMID: 37555797, DOI: 10.1111/jns.12590.Peer-Reviewed Original ResearchConceptsParoxysmal extreme pain disorderPainful peripheral neuropathyPain disordersSCN9A mutationsPeripheral neuropathyNovel SCN9A mutationsVoltage-gated sodium channel Nav1.7Sodium channel Nav1.7Steady-state fast inactivationGene panel sequencingPatch-clamp analysisAutonomic neuropathyNeuropathic painSCN9A geneClinical featuresUnderlying pathogenesisPathological studiesPatientsChannel Nav1.7EM phenotypePhenotypic spectrumNeuropathyNav1.7 channelsPatch-clamp systemElectrophysiological analysisPain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function
Jami S, Deuis J, Klasfauseweh T, Cheng X, Kurdyukov S, Chung F, Okorokov A, Li S, Zhang J, Cristofori-Armstrong B, Israel M, Ju R, Robinson S, Zhao P, Ragnarsson L, Andersson Å, Tran P, Schendel V, McMahon K, Tran H, Chin Y, Zhu Y, Liu J, Crawford T, Purushothamvasan S, Habib A, Andersson D, Rash L, Wood J, Zhao J, Stehbens S, Mobli M, Leffler A, Jiang D, Cox J, Waxman S, Dib-Hajj S, Neely G, Durek T, Vetter I. Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function. Nature Communications 2023, 14: 2442. PMID: 37117223, PMCID: PMC10147923, DOI: 10.1038/s41467-023-37963-2.Peer-Reviewed Original ResearchConceptsSensory neuronsVoltage-sensing domainNav channelsTransmembrane proteinAccessory proteinsVoltage-gated sodium channelsCritical regulatorPore domainChannel gatingExtracellular loopToxin-mediated effectsNeuronal excitabilityPeptide toxinsProteinSodium channelsPharmacological activitiesNav1.7 functionKnottin peptidesNeuronsImportant insightsToxinSubunitsRegulatorDomainExcelsaKv7-specific activators hyperpolarize resting membrane potential and modulate human iPSC-derived sensory neuron excitability
Estacion M, Liu S, Cheng X, Dib-Hajj S, Waxman S. Kv7-specific activators hyperpolarize resting membrane potential and modulate human iPSC-derived sensory neuron excitability. Frontiers In Pharmacology 2023, 14: 1138556. PMID: 36923357, PMCID: PMC10008904, DOI: 10.3389/fphar.2023.1138556.Peer-Reviewed Original Research
2019
Altered allostery of the left flipper domain underlies the weak ATP response of rat P2X5 receptors
Sun L, Liu Y, Wang J, Huang L, Yang Y, Cheng X, Fan Y, Zhu M, Liang H, Tian Y, Wang H, Guo C, Yu Y. Altered allostery of the left flipper domain underlies the weak ATP response of rat P2X5 receptors. Journal Of Biological Chemistry 2019, 294: 19589-19603. PMID: 31727741, PMCID: PMC6926468, DOI: 10.1074/jbc.ra119.009959.Peer-Reviewed Original ResearchConceptsFuture transgenic studiesFull-length variantATP responseTransmembrane domainTransgenic studiesMammalian speciesP2X5 receptorsAllosteryPathological functionsSingle replacementSingle-channel recordingsSkeletal muscleExon 10Molecular modelingFunctional subtypesATPResiduesNervous systemP2X5ReceptorsDomainMammalsSpeciesTM2Lack of knowledge
2018
Molecular mechanism underlying the subtype-selectivity of competitive inhibitor NF110 and its distinct potencies in human and rat P2X3 receptors
Li B, Wang J, Cheng X, Liu Y, Yang Y, Yang X, Guo C, Niu Y, Cao P, Lu X, Zhu M, Tian Y, Yu Y. Molecular mechanism underlying the subtype-selectivity of competitive inhibitor NF110 and its distinct potencies in human and rat P2X3 receptors. Science Bulletin 2018, 63: 1616-1625. PMID: 36658853, DOI: 10.1016/j.scib.2018.11.016.Peer-Reviewed Original ResearchP2X3 receptorsP2X receptorsExperimental animalsDifferent P2X receptorsLower bodyRat P2X3 receptorsDistinct potenciesSubtype-selective mannerHuman P2X3 receptorsLF domainInhibitors/modulatorsPreclinical dataClinical trialsAmino acidsEquivalent amino acidsATP-binding pocketClinical researchExtracellular ATPSubstitution of residuesReceptorsCation channelsPharmacological activitiesDorsal fin domainInhibitory efficacyChannel activityDruggable negative allosteric site of P2X3 receptors
Wang J, Wang Y, Cui W, Huang Y, Yang Y, Liu Y, Zhao W, Cheng X, Sun W, Cao P, Zhu M, Wang R, Hattori M, Yu Y. Druggable negative allosteric site of P2X3 receptors. Proceedings Of The National Academy Of Sciences Of The United States Of America 2018, 115: 4939-4944. PMID: 29674445, PMCID: PMC5948998, DOI: 10.1073/pnas.1800907115.Peer-Reviewed Original ResearchConceptsAllosteric siteNegative allosteric siteDruggable allosteric sitesG protein-coupled receptorsAllosteric modulationLeft flipperProtein-coupled receptorsNew drug targetsDorsal fin domainLB domainsClinical trialsP2X receptorsAllosteric changesAllosteric inhibitorsChannel mutantsDrug targetsPhase II clinical trialFunctional studiesFin domainRefractory chronic coughIdiopathic pulmonary fibrosisIon channelsLower bodyX-ray crystallographyNegative allosteric modulationGain of Function NaV1.7 Mutations in Idiopathic Small Fiber Neuropathy
Faber C, Hoeijmakers J, Ahn H, Cheng X, Han C, Choi J, Estacion M, Lauria G, Vanhoutte E, Gerrits M, Dib-Hajj S, Drenth J, Waxman S, Merkies I. Gain of Function NaV1.7 Mutations in Idiopathic Small Fiber Neuropathy. 2018, 175-194. DOI: 10.7551/mitpress/10310.003.0022.Peer-Reviewed Original ResearchNav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner
Li Y, Zhu T, Yang H, Dib-Hajj S, Waxman S, Yu Y, Xu TL, Cheng X. Nav1.7 is phosphorylated by Fyn tyrosine kinase which modulates channel expression and gating in a cell type-dependent manner. Molecular Pain 2018, 14: 1744806918782229. PMID: 29790812, PMCID: PMC6024516, DOI: 10.1177/1744806918782229.Peer-Reviewed Original ResearchConceptsND7/23 cellsDRG neuron excitabilityModulation of Nav1.7New pain therapeuticsVoltage-gated sodium channel Nav1.7Fyn kinaseWhole-cell recordingsSodium channel Nav1.7Elevated protein expressionCell type-specific modulationHuman embryonic kidney 293 cellsTyrosine kinasePain disordersEmbryonic kidney 293 cellsPain therapeuticsNeuron excitabilityPain perceptionMutant channelsChannel Nav1.7Kidney 293 cellsNav1.7HEK-293 cellsNav1.7 channelsCell type-dependent mannerType-dependent manner