1983
Maturation of mammalian myelinated fibers: changes in action-potential characteristics following 4-aminopyridine application
Kocsis J, Ruiz J, Waxman S. Maturation of mammalian myelinated fibers: changes in action-potential characteristics following 4-aminopyridine application. Journal Of Neurophysiology 1983, 50: 449-463. PMID: 6310062, DOI: 10.1152/jn.1983.50.2.449.Peer-Reviewed Original ResearchMeSH Keywords4-AminopyridineAction PotentialsAminopyridinesAnimalsIon ChannelsMaleNerve Fibers, MyelinatedPeripheral NervesPotassiumRatsRats, Inbred StrainsRefractory Period, Electrophysiological
1982
Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development
Foster R, Connors B, Waxman S. Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development. Brain Research 1982, 3: 371-386. PMID: 7066695, DOI: 10.1016/0165-3806(82)90005-0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornCalciumMicroscopy, ElectronNeural ConductionOptic NervePotassiumRatsRefractory Period, ElectrophysiologicalSodiumConceptsCompound action potentialAction potentialsConduction velocityOptic nerveOptic nerve axonsShort latency peaksRat optic nerveAxonal membrane propertiesShort-latency componentsSixth postnatal dayOnset of myelinationWeeks of ageRelative refractory periodDays of ageGlial cellsPostnatal dayRefractory periodNerve axonsAxonal diameterLatency componentsCalcium conductanceAxonal sizeMyelinationNerve growthLatency peaksConduction of trains of impulses in uniform myelinated fibers: Computed dependence on stimulus frequency
Wood S, Waxman S, Kocsis J. Conduction of trains of impulses in uniform myelinated fibers: Computed dependence on stimulus frequency. Neuroscience 1982, 7: 423-430. PMID: 7078731, DOI: 10.1016/0306-4522(82)90276-7.Peer-Reviewed Original ResearchAction PotentialsAmphibiansAnimalsBiophysical PhenomenaBiophysicsModels, NeurologicalNerve Fibers, MyelinatedNeural ConductionRefractory Period, Electrophysiological
1981
Action potential electrogenesis in mammalian central axons.
Kocsis J, Waxman S. Action potential electrogenesis in mammalian central axons. Advances In Neurology 1981, 31: 299-312. PMID: 6275668.Peer-Reviewed Original Research
1979
Dependence of refractory period measurements on conduction distance: A computer simulation analysis
Waxman S, Kocsis J, Brill M, Swadlow H. Dependence of refractory period measurements on conduction distance: A computer simulation analysis. Clinical Neurophysiology 1979, 47: 717-724. PMID: 91501, DOI: 10.1016/0013-4694(79)90299-2.Peer-Reviewed Original ResearchAction PotentialsComputersElectric StimulationHumansModels, NeurologicalNeural ConductionRefractory Period, ElectrophysiologicalVariation in conduction velocity during the relative refractory and supernormal periods: A mechanism for impulse entrainment in central axons
Kocsis J, Swadlow H, Waxman S, Brill M. Variation in conduction velocity during the relative refractory and supernormal periods: A mechanism for impulse entrainment in central axons. Experimental Neurology 1979, 65: 230-236. PMID: 262231, DOI: 10.1016/0014-4886(79)90263-2.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAxonsElectroencephalographyNeural ConductionRabbitsRefractory Period, ElectrophysiologicalVisual Cortex
1978
Characteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkey
Swadlow H, Rosene D, Waxman S. Characteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkey. Experimental Brain Research 1978, 33: 455-467. PMID: 103739, DOI: 10.1007/bf00235567.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCerebral CortexCorpus CallosumDominance, CerebralEfferent PathwaysElectric StimulationEvoked PotentialsHaplorhiniNeural ConductionNeuronsReaction TimeRefractory Period, ElectrophysiologicalConceptsCallosal efferent neuronsPrior impulseAxonal conduction velocityConduction velocityPrelunate gyrusEfferent neuronsCorpus callosumSupernormal periodRhesus monkeysCell of originRelative refractory periodSubnormal periodAntidromic activationAntidromic latenciesElectrical stimulationImpulse conductionRefractory periodElectrophysiological techniquesGyrusCallosumMonkeysExcitabilityNeuronsPeriodSpleniumLatency variability and the identification of antidromically activated neurons in mammalian brain
Swadlow H, Waxman S, Rosene D. Latency variability and the identification of antidromically activated neurons in mammalian brain. Experimental Brain Research 1978, 32: 439-443. PMID: 98342, DOI: 10.1007/bf00238715.Peer-Reviewed Original ResearchAnimalsCorpus CallosumElectric StimulationEvoked PotentialsHaplorhiniMacaca mulattaNeural ConductionNeuronsReaction TimeRefractory Period, ElectrophysiologicalVisual Cortex
1977
The conduction properties of axons in central white matter
Waxman S, Swadlow H. The conduction properties of axons in central white matter. Progress In Neurobiology 1977, 8: 297-324. PMID: 335441, DOI: 10.1016/0301-0082(77)90009-0.Peer-Reviewed Original ResearchAnimalsAxonsCatsCentral Nervous SystemCorpus CallosumDifferential ThresholdEvoked PotentialsNerve Fibers, MyelinatedNeural ConductionRabbitsReaction TimeRefractory Period, Electrophysiological
1976
Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit
Swadlow H, Waxman S. Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit. Experimental Neurology 1976, 53: 128-150. PMID: 964334, DOI: 10.1016/0014-4886(76)90288-0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCerebral CortexCorpus CallosumDifferential ThresholdEvoked PotentialsNeural ConductionRabbitsReaction TimeRefractory Period, ElectrophysiologicalSuperior ColliculiTime FactorsTouchVisual PathwaysConceptsCallosal axonsAntidromic latenciesConduction velocityContralateral cortical stimulationMain axon trunkLatency decreaseCorticotectal axonsAntidromic activationAxon trunkCortical stimulationTest stimuliAwake rabbitsConditioning stimulusCell bodiesAxonsControl valuesThreshold shiftDifferent axonsConditioning pulseAppropriate intervalsPresent studyRabbitsDurationStimuliLatency