2005
29 Blocking the Axonal Injury Cascade Neuroprotection in Multiple Sclerosis and Its Models
Waxman S, Lo A. 29 Blocking the Axonal Injury Cascade Neuroprotection in Multiple Sclerosis and Its Models. 2005, 435-449. DOI: 10.1016/b978-012738761-1/50030-4.Peer-Reviewed Original ResearchExperimental autoimmune encephalomyelitisWhite matter injuryAxonal injuryChannel blockersNitric oxideNon-glucocorticoid steroidsCalcium channel blockersHuman multiple sclerosis lesionsSodium channel blockersMultiple sclerosis lesionsEffects of drugsAutoimmune encephalomyelitisMS pathologyOptic nerveMultiple sclerosisFunctional outcomeNeuroprotective agentsΓ-aminobutyric acidHypoxic injuryPathological evidenceSpinal nervesSpinal cordAdrenergic receptorsVivo preparationSclerosis lesions
1998
Axon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental Study
Fern R, Davis P, Waxman S, Ransom B. Axon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental Study. Journal Of Neurophysiology 1998, 79: 95-105. PMID: 9425180, DOI: 10.1152/jn.1998.79.1.95.Peer-Reviewed Original ResearchConceptsAnoxia/aglycemiaCompound action potentialWithdrawal of oxygenOptic nerveCNS white matterWhite matterIsolated rat optic nerveEvoked compound action potentialAdult optic nerveOptic nerve functionRat optic nervePostnatal day 10Permanent lossMin of glucoseEnergy deprivationWithdrawal of glucoseGlucose withdrawalNerve functionAstrocytic glycogenAxon conductionHeightened metabolic activityAdult ratsAglycemiaIrreversible injuryNerve
1997
Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons
Steffensen I, Waxman S, Mills L, Stys P. Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons. Brain Research 1997, 776: 1-9. PMID: 9439790, DOI: 10.1016/s0006-8993(97)00868-8.Peer-Reviewed Original ResearchConceptsOptic nerveSpinal cordDorsal root axonsSciatic nerve sectionRat optic nerveCentral myelinated axonsCardiac type IFiner processesSimilar staining patternNerve sectionDorsal columnsSciatic nerveFrozen cryostat sectionsAnoxic injuryAxonal profilesImmunofluorescence labeling techniqueMyelinated axonsCell bodiesCryostat sectionsImportant mediatorAxonal localizationMammalian axonsNerveAxonsStaining patternRegulation of Na+ channel β1 and β2 subunit mRNA levels in cultured rat astrocytes
Oh Y, Lee Y, Waxman S. Regulation of Na+ channel β1 and β2 subunit mRNA levels in cultured rat astrocytes. Neuroscience Letters 1997, 234: 107-110. PMID: 9364509, DOI: 10.1016/s0304-3940(97)00694-0.Peer-Reviewed Original ResearchConceptsReverse transcription-polymerase chain reactionMRNA levelsSpinal cordCompetitive reverse transcription-polymerase chain reactionQuantitative competitive reverse transcription-polymerase chain reactionSpinal cord astrocytesRat optic nerveDibutyryl cAMPBeta 2 mRNACultured rat astrocytesTranscription-polymerase chain reactionBeta 1 mRNASubunit mRNA levelsNeuroblastoma cell linesOptic nerveChannel β1Cultured astrocytesRat astrocytesCalcium ionophoreAstrocytesBeta 1Chain reactionCell linesCordMRNA
1995
Endogenous GABA attenuates CNS white matter dysfunction following anoxia
Fern R, Waxman S, Ransom B. Endogenous GABA attenuates CNS white matter dysfunction following anoxia. Journal Of Neuroscience 1995, 15: 699-708. PMID: 7823173, PMCID: PMC6578328, DOI: 10.1523/jneurosci.15-01-00699.1995.Peer-Reviewed Original ResearchConceptsCompound action potentialEffect of GABAWhite matterEndogenous GABA releaseNerve fiber injuryGABA-B antagonistRelease of GABACAP recoveryGABA-B receptorsCNS white matterPertussis toxin treatmentWhite matter dysfunctionGABA-A agonistHigh agonist concentrationsReceptor/G-proteinControl conditionG proteinsPresence of GABAMin of anoxiaMM nipecotic acidFiber injuryGABA releaseReceptor blockadeOptic nerveEndogenous GABA
1994
Type II sodium channels in spinal cord astrocytes in situ: Immunocytochemical observations
Black J, Westenbroek R, Ransom B, Catterall W, Waxman S. Type II sodium channels in spinal cord astrocytes in situ: Immunocytochemical observations. Glia 1994, 12: 219-227. PMID: 7851989, DOI: 10.1002/glia.440120307.Peer-Reviewed Original ResearchConceptsAdult rat spinal cordRat spinal cordOptic nerveSubtype-specific sequencesSpinal cordVentral funiculusSpinal cord white matter tractsSpinal cord white matterSodium channelsSpinal cord astrocytesCord white matterWhite matter tractsType ISodium channel alphaWhite matterAstrocytesNerveImmunocytochemical methodsCordChannel alphaSodium channel IIIsoform expressionDetectable labelingType II sodium channelsImmunocytochemical observationsAnoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons
Waxman S, Black J, Ransom B, Stys P. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons. Brain Research 1994, 644: 197-204. PMID: 8050031, DOI: 10.1016/0006-8993(94)91680-2.Peer-Reviewed Original ResearchConceptsOptic nerveOptic nerve axonsRat optic nerveNerve axonsBrain slice chamberCompound action potentialLoss of cristaeMicroM tetrodotoxinAnoxic injuryNormoxic controlsNerveAstrocyte processesPerinodal astrocyte processesWhite matterMyelinated axonsAstrocytic processesCNS axonsTetrodotoxinAction potentialsSlice chamberAxonsLoss of microtubulesCytoskeletal damageInjuryNormoxic conditionsThe expression of rat brain voltage-sensitive Na+ channel mRNAs in astrocytes
Oh Y, Black J, Waxman S. The expression of rat brain voltage-sensitive Na+ channel mRNAs in astrocytes. Brain Research 1994, 23: 57-65. PMID: 8028484, DOI: 10.1016/0169-328x(94)90211-9.Peer-Reviewed Original ResearchConceptsRat brainChannel mRNAChannel subtypesCultured spinal cordSkeletal muscleRat optic nerveNeuronal cell bodiesRegions of CNSSubtype IRat skeletal muscleOptic nervePolymerase chain reactionSpinal cordRat astrocytesDistinct subtypesAstrocytesCell bodiesSubtypesBrainRT-PCRSubtype IIRat tissuesChain reactionRat liverReverse transcription
1993
Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium
Waxman S, Black J, Ransom B, Stys P. Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Research 1993, 614: 137-145. PMID: 8348309, DOI: 10.1016/0006-8993(93)91027-p.Peer-Reviewed Original ResearchConceptsArtificial cerebrospinal fluidMin of anoxiaOptic nerveZero-Ca2White matterAnoxic injuryCNS white matter tractAxonal cytoskeletonOptic nerve axonsCNS white matterRat optic nerveInflux of Ca2White matter tractsLoss of cristaeDisorganization of cristaeMembranous profilesUltrastructure of axonsAbnormal influxCerebrospinal fluidExtracellular calciumNerveMyelinated axonsNerve axonsNormal Ca2Axons
1992
Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter
Stys P, Waxman S, Ransom B. Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter. Cerebrovascular And Brain Metabolism Reviews 1992, 12: 977-986. PMID: 1400652, DOI: 10.1038/jcbfm.1992.135.Peer-Reviewed Original ResearchConceptsFunctional recoveryWhite matterAnoxic injuryMin of anoxiaOptic nerveFunctional outcomeTypical CNS white matter tractAnoxic exposureIntracellular Ca2Anoxic/ischemic injuryCNS white matter tractCompound action potential areaGray matterIsolated rat optic nerveGreater functional recoveryEvoked electrical activityAction potential areaCNS white matterRat optic nerveWhite matter tractsFunctional injuryIschemic injuryPathological increaseAnoxic damageCAP peakUltrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve
Waxman S, Black J, Stys P, Ransom B. Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Research 1992, 574: 105-119. PMID: 1638387, DOI: 10.1016/0006-8993(92)90806-k.Peer-Reviewed Original ResearchConceptsOptic nerveRat optic nerveMin of anoxiaPost-anoxic recoveryAnoxic injuryAstrocyte processesMyelin sheathLoss of microtubulesCell-mediated damageCNS white matterInflux of calciumLarge-diameter axonsPrevious electrophysiological studiesAction potential conductionWhite matter tractsNodes of RanvierAnoxic insultUltrastructure of axonsGlial cellsVesicular degenerationConduction blockEarly recoveryElectrophysiological studiesNerveSignificant injuryIonic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger
Stys P, Waxman S, Ransom B. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. Journal Of Neuroscience 1992, 12: 430-439. PMID: 1311030, PMCID: PMC6575619, DOI: 10.1523/jneurosci.12-02-00430.1992.Peer-Reviewed Original ResearchConceptsRat optic nerveCompound action potentialAnoxic injuryOptic nerveWhite matterAction potentialsCentral white matter tractsWhite matter injuryCNS white matterMembrane depolarizationAnoxia/ischemiaWhite matter tractsCNS protectionAnoxic insultMyelinated tractsChannel blockersExchanger blockerIrreversible injuryExtracellular Ca2Mammalian CNSNerveInjuryMore injuriesBlockersFunctional integrityChapter 8: The expression of sodium channels in astrocytes in situ and in vitro
Black J, Sontheimer H, Minturn J, Ransom B, Waxman S. Chapter 8: The expression of sodium channels in astrocytes in situ and in vitro. Progress In Brain Research 1992, 94: 89-107. PMID: 1337617, DOI: 10.1016/s0079-6123(08)61742-2.Peer-Reviewed Original ResearchConceptsOptic nerve astrocytesSodium channel expressionChannel expressionSodium channelsOptic nerveSodium current propertiesChannel expression patternsIon channel expressionSimilar electrophysiological propertiesCultured astrocytesAstrocytesElectrophysiological propertiesSodium currentHeterogeneous groupDifferent patternsNerveDifferent subpopulationsExpressionExpression patternsCell-cell interactionsHippocampusA2B5Neurons
1991
Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter
Stys P, Waxman S, Ransom B. Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter. Annals Of Neurology 1991, 30: 375-380. PMID: 1952825, DOI: 10.1002/ana.410300309.Peer-Reviewed Original ResearchConceptsWhite matterIsolated rat optic nerveCentral nervous system white matterNervous system white matterWhite matter injuryRat optic nerveMammalian central nervous systemSevere neurological impairmentCompound action potentialType of injuryCentral nervous systemFunctional recoveryOptic nervePharmacological blockadeNeurological impairmentAnoxic injuryIrreversible injuryNervous systemAction potentialsInjuryInfluxCa2Critical mechanismCellsNerveCompound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis
Stys P, Ransom B, Waxman S. Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis. Brain Research 1991, 546: 18-32. PMID: 1855148, DOI: 10.1016/0006-8993(91)91154-s.Peer-Reviewed Original Research
1990
Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve
Waxman S, Davis P, Black J, Ransom B. Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve. Annals Of Neurology 1990, 28: 335-340. PMID: 2241117, DOI: 10.1002/ana.410280306.Peer-Reviewed Original ResearchConceptsCompound action potentialOptic nerveCentral white matterMinutes of anoxiaAction potentialsMD ratsWhite matterMammalian central white matterSupramaximal compound action potentialCompound action potential amplitudeAction potential amplitudeNeonatal optic nerveRat optic nerveControl optic nervesDistinct action potentialsWhite matter tractsUnaffected male littermatesAnoxic injuryMale littermatesDays postnatalNervePotential amplitudeOligodendroglial proliferationEffects of anoxiaAdult pattern
1989
Pharmacological sensitivities of two afterhyperpolarizations in rat optic nerve
Gordon T, Kocsis J, Waxman S. Pharmacological sensitivities of two afterhyperpolarizations in rat optic nerve. Brain Research 1989, 502: 252-257. PMID: 2555026, DOI: 10.1016/0006-8993(89)90620-3.Peer-Reviewed Original ResearchConceptsRat optic nerveOptic nerveEarly afterhyperpolarizationPharmacological sensitivityAction potentialsPeak latencyAction potential broadeningConstant current depolarizationSucrose gap chamberPotassium channel blockerLate afterhyperpolarizationChannel blockersRepetitive stimulationAfterhyperpolarizationNervePotassium conductanceSucrose gapTetraethylammoniumPotential broadeningCurrent depolarizationDepolarizationDurationApaminBlockersCharybdotoxin
1988
Evidence for the presence of two types of potassium channels in the rat optic nerve
Gordon T, Kocsis J, Waxman S. Evidence for the presence of two types of potassium channels in the rat optic nerve. Brain Research 1988, 447: 1-9. PMID: 2454699, DOI: 10.1016/0006-8993(88)90959-6.Peer-Reviewed Original ResearchConceptsRat optic nervePostspike positivityOptic nerveAction potential waveformPotassium channelsAction potential broadeningSingle-fiber recordingsRepetitive firing patternsAction potential repolarizationTEA-sensitive channelsDistinct potassium channelsPotential waveformPronounced afterhyperpolarizationFiber recordingsWhole nerveIntracellular hyperpolarizationGap recordingsRepetitive firingMyelinated axonsNerveAction potentialsPotential repolarizationAfterhyperpolarizationFiring patternsProlonged depolarization
1987
Carbonic anhydrase activity develops postnatally in the rat optic nerve
Davis P, Carlini W, Ransom B, Black J, Waxman S. Carbonic anhydrase activity develops postnatally in the rat optic nerve. Brain Research 1987, 31: 291-298. DOI: 10.1016/0165-3806(87)90126-x.Peer-Reviewed Original ResearchRat optic nerveCNS white matterPhysiological alterationsLarger acid shiftDays of ageNeonatal nervesOlder nervesNerve 5Optic nervePostnatal dayWhite matterCarbonic anhydrase activityNerveNeural activityCA activityAgeOligodendrocytesAcid shiftMitotic inhibitorsMyelinAlterationsDaysEnzyme activityActivityOligodendrogliogenesis
1986
A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerve
Black J, Waxman S, Ransom B, Feliciano M. A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerve. Brain Research 1986, 380: 122-135. PMID: 2428420, DOI: 10.1016/0006-8993(86)91436-8.Peer-Reviewed Original ResearchConceptsRat optic nerveOptic nerve volumeNormal optic nervesOptic nerveNerve volumeTotal glial cellsNerve cross sectionsGlial cellsMyelinated fibersAxonal diameterAge-matched control tissueNeonatal rat optic nerveOptic nerve cross sectionsConcomitant marked reductionProgenitor cellsNumber of oligodendrogliaAge-matched controlsGlial cell developmentDays of ageEnsheathed axonsSystemic injectionNerveAstrocytic lineageControl tissuesGlia