2012
Myelin, Impulse Conduction, and the Pathophysiology of Demyelination
Bangalore L, Waxman S. Myelin, Impulse Conduction, and the Pathophysiology of Demyelination. 2012, 529-542. DOI: 10.1093/med/9780199794591.003.0042.Peer-Reviewed Original ResearchPathophysiology of demyelinationNormal brain functionMultiple sclerosisGlial cellsParkinson's diseaseNeurological diseasesAlzheimer's diseasePsychiatric conditionsImpulse conductionBrain functionDiseaseGliaNeuronsBasic biologyCell anatomyConcerted actionCellsDemyelinationSclerosisPathophysiologyStrokeCentral roleBrainMyelin
2005
6 The Conduction Properties of Demyelinated and Remyelinated Axons
Smith K, Waxman S. 6 The Conduction Properties of Demyelinated and Remyelinated Axons. 2005, 85-100. DOI: 10.1016/b978-012738761-1/50007-9.Peer-Reviewed Original ResearchRestoration of conductionConduction blockDemyelination-induced conduction blockExperimental demyelinating lesionsDemyelinating lesionsSegmental demyelinationMyelin thinningDemyelinated axonsElectrophysiological featuresConduction failureAxonal functionElectrophysiological propertiesDemyelinationAxonsMyelinLesionsIon channel populationsDemyelinated membraneChannel populationsAdaptive responseComplete loss
2000
Do ‘demyelinating’ diseases involve more than myelin?
Waxman S. Do ‘demyelinating’ diseases involve more than myelin? Nature Medicine 2000, 6: 738-739. PMID: 10888913, DOI: 10.1038/77450.Peer-Reviewed Original Research
1987
Carbonic anhydrase activity develops postnatally in the rat optic nerve
Davis P, Carlini W, Ransom B, Black J, Waxman S. Carbonic anhydrase activity develops postnatally in the rat optic nerve. Brain Research 1987, 31: 291-298. DOI: 10.1016/0165-3806(87)90126-x.Peer-Reviewed Original ResearchRat optic nerveCNS white matterPhysiological alterationsLarger acid shiftDays of ageNeonatal nervesOlder nervesNerve 5Optic nervePostnatal dayWhite matterCarbonic anhydrase activityNerveNeural activityCA activityAgeOligodendrocytesAcid shiftMitotic inhibitorsMyelinAlterationsDaysEnzyme activityActivityOligodendrogliogenesisChapter 8 Ionic channel organization of normal and regenerating mammalian axons
Kocsis J, Waxman S. Chapter 8 Ionic channel organization of normal and regenerating mammalian axons. Progress In Brain Research 1987, 71: 89-101. PMID: 2438722, DOI: 10.1016/s0079-6123(08)61816-6.Peer-Reviewed Original ResearchConceptsNerve fibersPeripheral nervesRegenerated nerve fibersCell remodellingNormal developmentMammalian nerve fibresSchwann cellsElectrophysiological characteristicsFine caliberMyelinated axonsImmature axonsAxonal growthMammalian axonsNerveNormal maturationRemodelling occursAxonsCell arrestRemodellingTime courseMyelinIonic channelsLong termMaturationTime of maturation
1986
Molecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve
Black J, Waxman S. Molecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve. Developmental Biology 1986, 115: 301-312. PMID: 2423398, DOI: 10.1016/0012-1606(86)90251-4.Peer-Reviewed Original ResearchConceptsRat optic nerveOptic nerveMyelinated fibersLarge caliber fibersAxonal diameterNeonatal rat optic nerveP-face IMP densityControl optic nervesDays of ageNodes of RanvierUnensheathed axonsGlial ensheathmentSystemic injectionNerveAxonsGliogenesisIMP densityAxolemmaE-face particlesCell associationIntramembranous particlesRatsOligodendrocytesMyelinEnsheathment
1983
Myelin protein metabolism in demyelination and remyelination in the sciatic nerve
Smith M, Kocsis J, Waxman S. Myelin protein metabolism in demyelination and remyelination in the sciatic nerve. Brain Research 1983, 270: 37-44. PMID: 6871715, DOI: 10.1016/0006-8993(83)90789-8.Peer-Reviewed Original ResearchConceptsMyelin proteinsControl nervesLPC injectionSciatic nerveRight sciatic nerveSeries of ratsLeft nerveSchwann cellsNerveStructural myelin proteinsLPC treatmentFirst weekTime pointsAmino acid incorporationProtein metabolismLabeled amino acidsAcid incorporationMyelinDaysInjectionLysophosphatidylcholineDemyelinationRemyelinationProteinRatsELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES11This work was supported in part by the Veterans Administration and by grants from the National Institutes of Health and the National Multiple Sclerosis Society.
Kocsis J, Waxman S. ELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES11This work was supported in part by the Veterans Administration and by grants from the National Institutes of Health and the National Multiple Sclerosis Society. 1983, 89-107. DOI: 10.1016/b978-0-12-635120-0.50010-2.Peer-Reviewed Original ResearchMyelinated axonsAction potentialsNational Multiple Sclerosis SocietyMultiple Sclerosis SocietyIntra-axonal recordingsEarly regenerating fibersNormal myelinated axonsRegenerating fibersPharmacological blockageBurst activityPotassium conductanceAxonsVeterans AdministrationNational InstituteRegenerated fibersRepolarizationFunctional organizationIonic channelsRatsAdministrationMyelin
1980
Absence of potassium conductance in central myelinated axons
Kocsis J, Waxman S. Absence of potassium conductance in central myelinated axons. Nature 1980, 287: 348-349. PMID: 7421994, DOI: 10.1038/287348a0.Peer-Reviewed Original ResearchConceptsCentral myelinated axonsMyelinated axonsAction potentialsPotassium conductanceDorsal column axonsVoltage-clamp experimentsLate outward currentOutward currentsAxonsSodium ion permeabilityLate increaseDepolarization phasePotassium permeabilityAxonal membraneRepolarizationMyelinInitial increaseVoltage-dependent changesSodium inactivationDemyelinationPrevious studies
1973
Features associated with paranodal demyelination at a specialized site in the non-pathological nervous system
Waxman S. Features associated with paranodal demyelination at a specialized site in the non-pathological nervous system. Journal Of The Neurological Sciences 1973, 19: 357-362. PMID: 4716850, DOI: 10.1016/0022-510x(73)90099-3.Peer-Reviewed Original Research