2016
A painful neuropathy-associated Nav1.7 mutant leads to time-dependent degeneration of small-diameter axons associated with intracellular Ca2+ dysregulation and decrease in ATP levels
Rolyan H, Liu S, Hoeijmakers JG, Faber CG, Merkies IS, Lauria G, Black JA, Waxman SG. A painful neuropathy-associated Nav1.7 mutant leads to time-dependent degeneration of small-diameter axons associated with intracellular Ca2+ dysregulation and decrease in ATP levels. Molecular Pain 2016, 12: 1744806916674472. PMID: 27821467, PMCID: PMC5102167, DOI: 10.1177/1744806916674472.Peer-Reviewed Original ResearchConceptsSmall fiber neuropathySmall-diameter axonsTime-dependent degenerationDorsal root ganglion neuronsNerve fiber injuryNervous system disordersPrevious clinical reportsIntracellular calcium levelsMutant Nav1.7 channelsATP levelsAδ nerve fibersHigh altitude sicknessPainful neuropathyTime-dependent increaseFiber injuryClinical onsetGanglion neuronsOxygen species productionSystem disordersCalcium levelsClinical reportsDistal extremitiesIntracellular Ca2NeuropathyNav1.7 channels
2010
Slowly Progressive Axonal Degeneration in a Rat Model of Chronic, Nonimmune-Mediated Demyelination
Wilkins A, Kondo Y, Song J, Liu S, Compston A, Black J, Waxman S, Duncan I. Slowly Progressive Axonal Degeneration in a Rat Model of Chronic, Nonimmune-Mediated Demyelination. Journal Of Neuropathology & Experimental Neurology 2010, 69: 1256-1269. PMID: 21107138, DOI: 10.1097/nen.0b013e3181ffc317.Peer-Reviewed Original ResearchConceptsCentral nervous systemAxonal lossAxonal degenerationAxonal pathologyTrophic supportEarly axonal lossProgressive axonal lossProgressive axonal degenerationWhite matter tractsTaiep mutant ratNerve countsWild-type controlsChronic demyelinationNeurologic disabilityMyelin lossSignificant inflammationRat modelOligodendrocyte dysfunctionImmunohistochemical analysisTaiep ratsNervous systemCNS regionsAxonal transportMutant ratsOligodendrocyte lineage
2004
Sodium channels contribute to microglia/macrophage activation and function in EAE and MS
Craner MJ, Damarjian TG, Liu S, Hains BC, Lo AC, Black JA, Newcombe J, Cuzner ML, Waxman SG. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia 2004, 49: 220-229. PMID: 15390090, DOI: 10.1002/glia.20112.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsDisease Models, AnimalEncephalomyelitis, Autoimmune, ExperimentalFemaleGliosisMacrophagesMaleMiceMice, Inbred C57BLMicrogliaMultiple SclerosisNAV1.6 Voltage-Gated Sodium ChannelNerve DegenerationNerve Tissue ProteinsNeuroprotective AgentsPhagocytosisPhenytoinRNA, MessengerSodium Channel BlockersSodium ChannelsTetrodotoxinUp-RegulationConceptsExperimental autoimmune encephalomyelitisMultiple sclerosisSodium channel blockersSodium channelsMicroglial activationChannel blockersPhagocytic capacityMicroglia/macrophage activationSpecific sodium channel blockerAcute MS lesionsDirect neuroprotective effectsPhagocytosis of microgliaActivation of microgliaAnti-inflammatory mechanismsSodium channel-blocking drugsInflammatory cell infiltrateLoss of axonsDisease multiple sclerosisSodium channel blockadeChannel-blocking drugsAxonal sodium channelsAutoimmune encephalomyelitisInflammatory mechanismsNeuroinflammatory disordersCell infiltrate