2021
Contributions of NaV1.8 and NaV1.9 to excitability in human induced pluripotent stem-cell derived somatosensory neurons
Alsaloum M, Labau JIR, Liu S, Estacion M, Zhao P, Dib-Hajj F, Waxman SG. Contributions of NaV1.8 and NaV1.9 to excitability in human induced pluripotent stem-cell derived somatosensory neurons. Scientific Reports 2021, 11: 24283. PMID: 34930944, PMCID: PMC8688473, DOI: 10.1038/s41598-021-03608-x.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAutopsyCell DifferentiationElectrophysiologyHumansImmunohistochemistryInduced Pluripotent Stem CellsMembrane PotentialsMutationNAV1.8 Voltage-Gated Sodium ChannelNAV1.9 Voltage-Gated Sodium ChannelNeuronsNeurosciencesPainPatch-Clamp TechniquesProtein IsoformsSensory Receptor CellsSomatosensory CortexConceptsNeuronal excitabilitySomatosensory neuronsPluripotent stem cell-derived sensory neuronsDynamic clamp electrophysiologyTreatment of painPromising novel modalityVoltage-gated sodium channelsSodium channel isoformsNeuronal membrane potentialGenetic knockout modelsNav1.9 currentsPharmacologic blockSensory neuronsNav1.8Cellular correlatesRepetitive firingClamp electrophysiologyExcitabilityNeuronal backgroundNovel modalityChannel isoformsSodium channelsNeuronsNav1.9Knockout models
2014
Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H
Vasylyev DV, Han C, Zhao P, Dib-Hajj S, Waxman SG. Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H. Journal Of Neurophysiology 2014, 111: 1429-1443. PMID: 24401712, DOI: 10.1152/jn.00763.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiophysicsCells, CulturedElectric StimulationErythromelalgiaGanglia, SpinalHEK293 CellsHumansMembrane PotentialsMiceMice, KnockoutModels, BiologicalMutationNAV1.7 Voltage-Gated Sodium ChannelNeural ConductionNeuronsPatch-Clamp TechniquesSodium Channel BlockersTetrodotoxinTransfectionConceptsDRG neuronsMutant Nav1.7 channelsNav1.7 channelsDorsal root ganglion neuronsSodium influxPrimary nociceptive neuronsSmall DRG neuronsNet sodium influxSodium channel Nav1.7Current thresholdMechanistic linkAction potential generationNeuropathic painNociceptive neuronsNociceptor functionGanglion neuronsNociceptor hyperexcitabilityPain phenotypesChannel expressionChannel Nav1.7Subthreshold depolarizationHuman Nav1.7Electrophysiological recordingsDynamic-Clamp AnalysisIdentification of gain
2012
Nav1.7-related small fiber neuropathy
Han C, Hoeijmakers JG, Ahn H, Zhao P, Shah P, Lauria G, Gerrits MM, te Morsche R, Dib-Hajj SD, Drenth JP, Faber CG, Merkies IS, Waxman SG. Nav1.7-related small fiber neuropathy. Neurology 2012, 78: 1635-1643. PMID: 22539570, DOI: 10.1212/wnl.0b013e3182574f12.Peer-Reviewed Original ResearchMeSH KeywordsExonsFemaleGanglia, SpinalHEK293 CellsHumansMiddle AgedNAV1.7 Voltage-Gated Sodium ChannelPatch-Clamp TechniquesPolyneuropathiesSodium ChannelsConceptsSmall fiber neuropathyDorsal root gangliaDRG neuronsIdiopathic small fiber neuropathySmall-diameter peripheral axonsDRG neuron hyperexcitabilityIdentifiable underlying causeNerve conduction studiesQuantitative sensory testingSympathetic ganglion neuronsSFN symptomsNeuron hyperexcitabilityConduction studiesGanglion neuronsRoot gangliaSkin biopsiesDifferential diagnosisPeripheral axonsSensory testingVoltage-clamp analysisApparent causePatientsNoninactivating componentUnderlying causeSuprathreshold stimuli