2021
Phylogenomic analyses of the genus Drosophila reveals genomic signals of climate adaptation
Li F, Rane R, Luria V, Xiong Z, Chen J, Li Z, Catullo R, Griffin P, Schiffer M, Pearce S, Lee S, McElroy K, Stocker A, Shirriffs J, Cockerell F, Coppin C, Sgrò C, Karger A, Cain J, Weber J, Santpere G, Kirschner M, Hoffmann A, Oakeshott J, Zhang G. Phylogenomic analyses of the genus Drosophila reveals genomic signals of climate adaptation. Molecular Ecology Resources 2021, 22: 1559-1581. PMID: 34839580, PMCID: PMC9299920, DOI: 10.1111/1755-0998.13561.Peer-Reviewed Original ResearchConceptsClimate generalistsDrosophila speciesGenus DrosophilaPhylogenomic analysisSignificant phylogenetic incongruenceEvolutionary genomic studiesMelanogaster species groupGenome-wide signalsDifferent climatic nichesHigh-quality assemblySmall population sizeIncomplete lineageSubgenus DrosophilaAsymmetric introgressionSubgenus SophophoraPhylogenetic incongruenceNew transcriptomesGene gainClimatic nicheGenome diversityNatural populationsWidespread speciesGenomic signalsSpecies groupsClimate niche
2019
The genome of the giant Nomura’s jellyfish sheds light on the early evolution of active predation
Kim H, Weber J, Lee N, Park S, Cho Y, Bhak Y, Lee N, Jeon Y, Jeon S, Luria V, Karger A, Kirschner M, Jo Y, Woo S, Shin K, Chung O, Ryu J, Yim H, Lee J, Edwards J, Manica A, Bhak J, Yum S. The genome of the giant Nomura’s jellyfish sheds light on the early evolution of active predation. BMC Biology 2019, 17: 28. PMID: 30925871, PMCID: PMC6441219, DOI: 10.1186/s12915-019-0643-7.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiological EvolutionEvolution, MolecularGenomePhylogenyPredatory BehaviorScyphozoaConceptsActive predationGene family expansionPosterior Hox genesFamily expansionAncient lineageBiochemical innovationHox genesBody planPhysiological traitsCodon biasType II familyGenetic basisGenomeClass ScyphozoaTranscriptomeDevelopmental stagesFirst animalEarly evolutionNeurotransmitter genesJellyfishCnidariansPredationRetinoic acidGenesKey innovation
2016
The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity
Hanschen E, Marriage T, Ferris P, Hamaji T, Toyoda A, Fujiyama A, Neme R, Noguchi H, Minakuchi Y, Suzuki M, Kawai-Toyooka H, Smith D, Sparks H, Anderson J, Bakarić R, Luria V, Karger A, Kirschner M, Durand P, Michod R, Nozaki H, Olson B. The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nature Communications 2016, 7: 11370. PMID: 27102219, PMCID: PMC4844696, DOI: 10.1038/ncomms11370.Peer-Reviewed Original ResearchConceptsEvolution of multicellularityCell cycle regulationCycle regulationVolvocine green algaeCell cycle regulatory pathwaysDomains of lifeGroup-level adaptationsCell cycle regulatorsGonium pectoraleEvolutionary transitionsUnicellular ChlamydomonasEvolutionary historyGreen algaeTractable systemGenome sequenceMulticellularityGenetic basisRegulatory pathwaysCycle regulatorsColonial algaInitial stepRegulationNumerous timesChlamydomonasGonium