2014
Targeting steroid receptor coactivator 1 with antisense oligonucleotides increases insulin-stimulated skeletal muscle glucose uptake in chow-fed and high-fat-fed male rats
Cantley JL, Vatner DF, Galbo T, Madiraju A, Petersen M, Perry RJ, Kumashiro N, Guebre-Egziabher F, Gattu AK, Stacy MR, Dione DP, Sinusas AJ, Ragolia L, Hall CE, Manchem VP, Bhanot S, Bogan JS, Samuel VT. Targeting steroid receptor coactivator 1 with antisense oligonucleotides increases insulin-stimulated skeletal muscle glucose uptake in chow-fed and high-fat-fed male rats. AJP Endocrinology And Metabolism 2014, 307: e773-e783. PMID: 25159329, PMCID: PMC4216948, DOI: 10.1152/ajpendo.00148.2014.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsBiological TransportDiet, High-FatEnzyme InhibitorsGene Expression Regulation, EnzymologicGlucose IntoleranceGlucose Transporter Type 4Insulin ResistanceIntracellular Signaling Peptides and ProteinsIntramolecular OxidoreductasesLipocalinsLiverMaleMuscle, SkeletalNuclear Receptor Coactivator 1Oligodeoxyribonucleotides, AntisensePhosphoenolpyruvate Carboxykinase (GTP)Prostaglandin D2Protein Interaction Domains and MotifsProteolysisRats, Sprague-DawleyConceptsMuscle glucose uptakeSteroid receptor coactivator-1Endogenous glucose productionInsulin-stimulated muscle glucose uptakeReceptor coactivator-1Glucose uptakeGlucose homeostasisInsulin-stimulated skeletal muscle glucose uptakeAntisense oligonucleotideBasal endogenous glucose productionInsulin-stimulated whole-body glucose disposalCoactivator-1Whole-body glucose disposalSkeletal muscle glucose uptakeLipocalin-type prostaglandin D2 synthaseSprage-Dawley ratsGluconeogenic enzymes
2010
Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice
Ayala JE, Consortium F, Samuel V, Morton G, Obici S, Croniger C, Shulman G, Wasserman D, McGuinness O. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models & Mechanisms 2010, 3: 525-534. PMID: 20713647, PMCID: PMC2938392, DOI: 10.1242/dmm.006239.Peer-Reviewed Original Research