2022
Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR
Sempou E, Kostiuk V, Zhu J, Cecilia Guerra M, Tyan L, Hwang W, Camacho-Aguilar E, Caplan M, Zenisek D, Warmflash A, Owens N, Khokha M. Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR. Nature Communications 2022, 13: 6681. PMID: 36335122, PMCID: PMC9637099, DOI: 10.1038/s41467-022-34363-w.Peer-Reviewed Original ResearchConceptsPluripotent cellsAdult tissue homeostasisCell fate commitmentDifferentiated cell fatesLeft-right patterningPluripotent embryonic cellsHuman embryonic stem cellsTemporal transcriptome analysisGene regulatory networksExpense of differentiationEmbryonic stem cellsGerm layer differentiationMembrane depolarizationFate commitmentPluripotent stateCell fateTranscriptome analysisRegulatory networksMyogenic lineageEmbryonic developmentTissue homeostasisDifferentiated fateEmbryonic cellsCandidate genesPluripotency
2021
Xenopus as a platform for discovery of genes relevant to human disease
Kostiuk V, Khokha MK. Xenopus as a platform for discovery of genes relevant to human disease. Current Topics In Developmental Biology 2021, 145: 277-312. PMID: 34074532, PMCID: PMC8734201, DOI: 10.1016/bs.ctdb.2021.03.005.Peer-Reviewed Original ResearchConceptsCandidate genesHuman diseasesDiscovery of genesScreen candidate genesMultiple candidate genesPatient genomic dataHuman genomePatient phenotypesDisease pathogenesisGenomic dataComplex phenotypesFate mapGene knockoutKnockdown strategyPatient mutationsBirth defectsXenopusFunctional studiesGenesPhenotypeCongenital birthAbnormal developmentCongenital heart diseaseCause of deathBetter diagnostic methods