2024
Individual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells
Kim S, Seo S, Stein-O’Brien G, Jaishankar A, Ogawa K, Micali N, Luria V, Karger A, Wang Y, Kim H, Hyde T, Kleinman J, Voss T, Fertig E, Shin J, Bürli R, Cross A, Brandon N, Weinberger D, Chenoweth J, Hoeppner D, Sestan N, Colantuoni C, McKay R. Individual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells. Stem Cell Reports 2024, 19: 1336-1350. PMID: 39151428, PMCID: PMC11411333, DOI: 10.1016/j.stemcr.2024.07.004.Peer-Reviewed Original ResearchHuman pluripotent stem cellsEarly mammalian developmentConsequences of variationPluripotent stem cellsTranscriptomic variationMammalian developmentTranscriptomic patternsTranscriptomic traitsReplicate linesMesendodermal lineagesNeural fateAdult tissuesLineagesHindbrain fateTranscriptional signatureTranscriptomic signaturesEarly eventLineage biasHuman pluripotent stem cell linesStem cellsFateIndividual variationAnterior to posterior structuresEpigenetic originCells
2023
Molecular programs of regional specification and neural stem cell fate progression in macaque telencephalon
Micali N, Ma S, Li M, Kim S, Mato-Blanco X, Sindhu S, Arellano J, Gao T, Shibata M, Gobeske K, Duque A, Santpere G, Sestan N, Rakic P. Molecular programs of regional specification and neural stem cell fate progression in macaque telencephalon. Science 2023, 382: eadf3786. PMID: 37824652, PMCID: PMC10705812, DOI: 10.1126/science.adf3786.Peer-Reviewed Original Research
2022
Cellular recovery after prolonged warm ischaemia of the whole body
Andrijevic D, Vrselja Z, Lysyy T, Zhang S, Skarica M, Spajic A, Dellal D, Thorn SL, Duckrow RB, Ma S, Duy PQ, Isiktas AU, Liang D, Li M, Kim SK, Daniele SG, Banu K, Perincheri S, Menon MC, Huttner A, Sheth KN, Gobeske KT, Tietjen GT, Zaveri HP, Latham SR, Sinusas AJ, Sestan N. Cellular recovery after prolonged warm ischaemia of the whole body. Nature 2022, 608: 405-412. PMID: 35922506, PMCID: PMC9518831, DOI: 10.1038/s41586-022-05016-1.Peer-Reviewed Original ResearchConceptsSingle-nucleus transcriptomic analysesSpecific gene expression patternsCellular recoveryGene expression patternsCellular processesMammalian cellsTranscriptomic analysisLarge mammalsExpression patternsCellular repair processesCell deathComprehensive resourceUnderappreciated potentialPhysiological challengesTissue integrityRepair processSpecific changesPorcine brainMammalsOrgansMultiple organsImpaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus
Duy PQ, Weise SC, Marini C, Li XJ, Liang D, Dahl PJ, Ma S, Spajic A, Dong W, Juusola J, Kiziltug E, Kundishora AJ, Koundal S, Pedram MZ, Torres-Fernández LA, Händler K, De Domenico E, Becker M, Ulas T, Juranek SA, Cuevas E, Hao LT, Jux B, Sousa AMM, Liu F, Kim SK, Li M, Yang Y, Takeo Y, Duque A, Nelson-Williams C, Ha Y, Selvaganesan K, Robert SM, Singh AK, Allington G, Furey CG, Timberlake AT, Reeves BC, Smith H, Dunbar A, DeSpenza T, Goto J, Marlier A, Moreno-De-Luca A, Yu X, Butler WE, Carter BS, Lake EMR, Constable RT, Rakic P, Lin H, Deniz E, Benveniste H, Malvankar NS, Estrada-Veras JI, Walsh CA, Alper SL, Schultze JL, Paeschke K, Doetzlhofer A, Wulczyn FG, Jin SC, Lifton RP, Sestan N, Kolanus W, Kahle KT. Impaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus. Nature Neuroscience 2022, 25: 458-473. PMID: 35379995, PMCID: PMC9664907, DOI: 10.1038/s41593-022-01043-3.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusCerebral ventricular dilatationPrimary defectNeuroepithelial cell differentiationRisk genesCerebrospinal fluid homeostasisWhole-exome sequencingNeuroepithelial stem cellsCortical hypoplasiaReduced neurogenesisVentricular dilatationVentricular enlargementCH mutationsPrenatal hydrocephalusDisease heterogeneityBrain surgeryCSF circulationHydrocephalusGenetic subtypesFluid homeostasisNeuroepithelial cellsNovo mutationsBrain transcriptomicsStem cellsCell differentiation
2021
Regulation of prefrontal patterning and connectivity by retinoic acid
Shibata M, Pattabiraman K, Lorente-Galdos B, Andrijevic D, Kim SK, Kaur N, Muchnik SK, Xing X, Santpere G, Sousa AMM, Sestan N. Regulation of prefrontal patterning and connectivity by retinoic acid. Nature 2021, 598: 483-488. PMID: 34599305, PMCID: PMC9018119, DOI: 10.1038/s41586-021-03953-x.Peer-Reviewed Original ResearchConceptsPrefrontal cortexRetinoic acidGranular layer 4Neocortex of humansRetinoic acid signalingCerebral cortexRetinoic acid receptorsMotor cortexMotor areaMediodorsal thalamusFetal developmentCortical expansionAcid receptorsGenetic deletionDendritic spinogenesisLayer 4Synthesizing enzymesCortexAcid signalingNeural developmentMiceCritical roleSignalingThalamusSpinogenesis
2020
Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates
Micali N, Kim SK, Diaz-Bustamante M, Stein-O’Brien G, Seo S, Shin JH, Rash BG, Ma S, Wang Y, Olivares NA, Arellano JI, Maynard KR, Fertig EJ, Cross AJ, Bürli RW, Brandon NJ, Weinberger DR, Chenoweth JG, Hoeppner DJ, Sestan N, Rakic P, Colantuoni C, McKay RD. Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates. Cell Reports 2020, 31: 107599. PMID: 32375049, PMCID: PMC7357345, DOI: 10.1016/j.celrep.2020.107599.Peer-Reviewed Original ResearchConceptsNeural stem cellsNeuronal fateProliferative neural stem cellsStem cellsPluripotent linesTelencephalic fateRNA sequencingLineage tracingHuman neural stem cellsGlutamatergic excitatory neuronsMonkey brain sectionsNeuronal trajectoriesCell imagingCortical excitatoryCerebral cortexFateExcitatory neuronsBrain sectionsHuman telencephalonNeuropsychiatric disordersAcute transitionPluripotencyCellsCortexSequencingDissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs
Burke EE, Chenoweth JG, Shin JH, Collado-Torres L, Kim SK, Micali N, Wang Y, Colantuoni C, Straub RE, Hoeppner DJ, Chen HY, Sellers A, Shibbani K, Hamersky GR, Diaz Bustamante M, Phan BN, Ulrich WS, Valencia C, Jaishankar A, Price AJ, Rajpurohit A, Semick SA, Bürli RW, Barrow JC, Hiler DJ, Page SC, Martinowich K, Hyde TM, Kleinman JE, Berman KF, Apud JA, Cross AJ, Brandon NJ, Weinberger DR, Maher BJ, McKay RDG, Jaffe AE. Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs. Nature Communications 2020, 11: 462. PMID: 31974374, PMCID: PMC6978526, DOI: 10.1038/s41467-019-14266-z.Peer-Reviewed Original ResearchConceptsHuman induced pluripotent stem cellsNeural precursor cellsExpression dataSingle-cell expression dataNeuronal differentiationSequencing read alignmentsInduced pluripotent stem cellsEarly neuronal differentiationPluripotent stem cellsTranscriptomic resourcesIPSC donorNeuronal culturesSubclonal linesNeural differentiationTranscriptomic signaturesHuman neural precursor cellsNeuronal cellsStem cellsPrecursor cellsCell sortingGlobal patternsPowerful modelSubset of neuronsRead alignmentDifferentiation
2018
Nanotopographical regulation of pancreatic islet-like cluster formation from human pluripotent stem cells using a gradient-pattern chip
Kim J, Park B, Kim S, Lee D, Lee G, Kim D, Choi B, Lee K, Kim J. Nanotopographical regulation of pancreatic islet-like cluster formation from human pluripotent stem cells using a gradient-pattern chip. Acta Biomaterialia 2018, 95: 337-347. PMID: 30529081, DOI: 10.1016/j.actbio.2018.12.011.Peer-Reviewed Original ResearchConceptsHuman pluripotent stem cellsPancreatic islet-like clustersStem cell fatePluripotent stem cellsIslet-like clustersCell fateSpecific functional cell typesCell typesPancreatic endocrine progenitorsStem cellsStem cell nichePancreatic islet developmentFunctional cell typesSpecific cell typesPancreatic cellsDevelopmental regulatorsEndocrine progenitorsCell nicheMechanical cuesPancreatic β-cellsPolyhormonal cellsComprehensive transcriptome analysis of Sarcophaga peregrina, a forensically important fly species
Kim J, Lim H, Shin S, Cha H, Seo J, Kim S, Park S, Son G. Comprehensive transcriptome analysis of Sarcophaga peregrina, a forensically important fly species. Scientific Data 2018, 5: 180220. PMID: 30398471, PMCID: PMC6219405, DOI: 10.1038/sdata.2018.220.Peer-Reviewed Original ResearchConceptsGenome informationSarcophaga peregrinaFly speciesSequence informationS. peregrinaComprehensive transcriptome analysisPrecise sequence informationDe novo assemblyMinimal postmortem intervalImportant fly speciesPrimary sequence informationGene expression datasetsFunctional annotationGenome databaseNovo assemblyTranscriptome analysisGene OntologyKyoto EncyclopediaRaw readsRNA sequencingRNA transcriptsIllumina MiSeqExpression datasetsForensic importanceUnigenes
2015
Pancreatic Islet-Like Three-Dimensional Aggregates Derived From Human Embryonic Stem Cells Ameliorate Hyperglycemia in Streptozotocin-Induced Diabetic Mice
Shim J, Kim J, Han J, An S, Jang Y, Son J, Woo D, Kim S, Kim J. Pancreatic Islet-Like Three-Dimensional Aggregates Derived From Human Embryonic Stem Cells Ameliorate Hyperglycemia in Streptozotocin-Induced Diabetic Mice. Cell Transplantation 2015, 24: 2155-2168. PMID: 25397866, DOI: 10.3727/096368914x685438.Peer-Reviewed Original ResearchConceptsDiabetic miceHuman embryonic stem cellsClinical islet transplantationBlood glucose levelsMature pancreatic endocrine cellsPancreatic endocrine cellsStem cellsInhibition of NotchAmeliorate hyperglycemiaIslet transplantationPancreatic hormonesGlucose levelsPancreatic endodermDonor isletsPancreatic featuresActivin APharmacological drugsEndocrine cellsIncreased expressionThree-dimensional aggregatesExpression of Neurog3Transient upregulationProgenitor cellsRetinoic acidActivin βBPluripotent stem cell colonies provide a developmental landscape for pharmacogenomic drug discovery
Hoeppner D, Chenoweth J, Kim S, Jaishankar A, Wang Y, Olivares N, Seo S, Stein-O'Brien G, Colantuoni C, McKay R. Pluripotent stem cell colonies provide a developmental landscape for pharmacogenomic drug discovery. Planta Medica 2015, 81 DOI: 10.1055/s-0035-1556134.Peer-Reviewed Original Research
2012
Sox2 Acts through Sox21 to Regulate Transcription in Pluripotent and Differentiated Cells
Kuzmichev A, Kim S, D’Alessio A, Chenoweth J, Wittko I, Campanati L, McKay R. Sox2 Acts through Sox21 to Regulate Transcription in Pluripotent and Differentiated Cells. Current Biology 2012, 22: 1705-1710. PMID: 22902753, DOI: 10.1016/j.cub.2012.07.013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCDX2 Transcription FactorCell DifferentiationCell LineColonic NeoplasmsFibroblastsGene Expression RegulationHomeodomain ProteinsIntestinal MucosaIntestinesMiceMice, TransgenicOctamer Transcription Factor-3Pluripotent Stem CellsSOXB1 Transcription FactorsSOXB2 Transcription FactorsTranscription FactorsTranscription, GeneticTranscriptional ActivationConceptsStem cellsImportant transcriptional regulatorStem cell renewalIntestinal stem cellsAdult stem cellsColon cancer cellsEndodermal identityPluripotent stem cellsEffect of SOX2Gene familyCell identityPluripotent stateTranscriptional partnersTranscriptional regulatorsTranscriptional inductionTranscription factorsMaster regulatorTranscriptional actionGene expressionSox21Differentiated cellsCell renewalSOX2General mediatorCell types
2011
Direct and Indirect Contribution of Human Embryonic Stem Cell–Derived Hepatocyte-Like Cells to Liver Repair in Mice
Woo D, Kim S, Lim H, Heo J, Park H, Kang G, Kim S, You H, Hoeppner D, Kim Y, Kwon H, Choi T, Lee J, Hong S, Song K, Ahn E, Chenoweth J, Tesar P, McKay R, Kim J. Direct and Indirect Contribution of Human Embryonic Stem Cell–Derived Hepatocyte-Like Cells to Liver Repair in Mice. Gastroenterology 2011, 142: 602-611. PMID: 22138358, DOI: 10.1053/j.gastro.2011.11.030.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkersCarbon TetrachlorideCell DifferentiationCell ProliferationCell SeparationCells, CulturedChemical and Drug Induced Liver InjuryCoculture TechniquesDisease Models, AnimalEmbryonic Stem CellsHepatocytesHumansImmunohistochemistryInduced Pluripotent Stem CellsLaser Capture MicrodissectionLithium ChlorideLiverLiver RegenerationMass SpectrometryMiceMice, Inbred BALB CMice, NudeMicroscopy, ElectronNeovascularization, PhysiologicPolymerase Chain ReactionProteomicsTime FactorsWound HealingConceptsHepatocyte-like cellsLiver repairLiver tissueCell replacementEndogenous liver regenerationAcute liver injuryDirect cell replacementHost liver tissueStem cellsLiver of miceIndocyanine green stainingHuman embryonic stem cell-derived cellsEmbryonic stem cell-derived cellsCell-derived signalsHost tissue repairStem cell-derived cellsStem cell-derived hepatocyte-like cellsCell-derived hepatocyte-like cellsLiver injuryCell-derived cellsPolymerase chain reactionCell graftsIntraperitoneal injectionHepatic featuresTrophic factorsBiochemical and Morphological Effects of Hypoxic Environment on Human Embryonic Stem Cells in Long-Term Culture and Differentiating Embryoid Bodies
Lim H, Han J, Woo D, Kim S, Kim S, Kang H, Kim J. Biochemical and Morphological Effects of Hypoxic Environment on Human Embryonic Stem Cells in Long-Term Culture and Differentiating Embryoid Bodies. Molecules And Cells 2011, 31: 123-132. PMID: 21347709, PMCID: PMC3932683, DOI: 10.1007/s10059-011-0016-8.Peer-Reviewed Original ResearchConceptsHuman embryonic stem cellsMild hypoxiaEmbryonic stem cellsEmbryoid bodiesLong-term cultureBrdU incorporationCell fate determinationDifferentiating embryoid bodiesExpression of markersCaspase-3 immunostainingStem cellsPercentage of cellsEmbryonic germ layersActive caspase-3Hematoxylineosin stainingMammalian reproductive tract
2009
Differential cytotoxic effects of mono-(2-ethylhexyl) phthalate on blastomere-derived embryonic stem cells and differentiating neurons
Lim C, Kim S, Ko D, Cho J, Jun J, An S, Han J, Kim J, Yoon Y. Differential cytotoxic effects of mono-(2-ethylhexyl) phthalate on blastomere-derived embryonic stem cells and differentiating neurons. Toxicology 2009, 264: 145-154. PMID: 19720108, DOI: 10.1016/j.tox.2009.08.015.Peer-Reviewed Original ResearchDifferentiation of Neural Progenitor Cells in a Microfluidic Chip‐Generated Cytokine Gradient
Park J, Kim S, Woo D, Lee E, Kim J, Lee S. Differentiation of Neural Progenitor Cells in a Microfluidic Chip‐Generated Cytokine Gradient. Stem Cells 2009, 27: 2646-2654. PMID: 19711444, DOI: 10.1002/stem.202.Peer-Reviewed Original ResearchConceptsCell typesNeural progenitorsHuman embryonic stem cellsEarly embryonic developmentStem cellsEmbryonic stem cellsCytokine gradientsEnriched populationNeural progenitor cellsPrimitive stem cellsEmbryonic developmentSignaling moleculesDiverse tissuesCell body clustersProgenitor cellsNeurite bundlesGrowth factorProgenitorsCell-friendly microenvironmentCellsDifferentiationExogenous cytokinesImportant roleBody clustersSpatial gradientsDifferentiation of Human Neural Progenitor Cells on PLGA Microfibers
Hwang C, Kim S, Kim J, Khademhosseini A, Lee S. Differentiation of Human Neural Progenitor Cells on PLGA Microfibers. 2009, 1: 1-2. DOI: 10.1109/nebc.2009.4967758.Peer-Reviewed Original ResearchHuman embryonic stem cellsNeural progenitor cellsEmbryoid bodiesMicrofluidic spinning systemPLGA microfibersNeural tissue regenerationEmbryonic stem cellsNeural tissue engineeringProgenitor cellsHuman neural progenitor cellsTissue engineeringNeuronal protein expressionNeural progenitor markersGlial fibrillary acidic proteinMicrofibersTissue regenerationNascent fibersPLGA fibersNeural progenitorsDifferentiated cellsCell differentiationProgenitor markersStem cellsGuidance cuesProtein expressionDNA-Enrichment Microfluidic Chip for Chromatin Immunoprecipitation
Oh H, Park J, Park S, Lee B, Park J, Kim S, Yoon T, Lee S. DNA-Enrichment Microfluidic Chip for Chromatin Immunoprecipitation. Analytical Chemistry 2009, 81: 2832-2839. PMID: 19298056, DOI: 10.1021/ac802034s.Peer-Reviewed Original ResearchVitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells
Gil J, Woo D, Shim J, Kim S, You H, Park S, Paek S, Kim S, Kim J. Vitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells. FEBS Letters 2009, 583: 561-567. PMID: 19162023, DOI: 10.1016/j.febslet.2008.12.061.Peer-Reviewed Original Research
2008
Inhibitory Effect of Tributyltin on Expression of Steroidogenic Enzymes in Mouse Testis
Kim S, Kim J, Han J, Yoon Y. Inhibitory Effect of Tributyltin on Expression of Steroidogenic Enzymes in Mouse Testis. International Journal Of Toxicology 2008, 27: 175-182. PMID: 18404541, DOI: 10.1080/10915810801977906.Peer-Reviewed Original ResearchConceptsInterstitial Leydig cellsSteroidogenic enzymesLeydig cellsImmature male miceSerum testosterone concentrationsTesticular developmentInhibition of steroidogenesisCholesterol side-chain cleavage enzymeSide-chain cleavage enzymeSteroid hormone productionGerm cellsTesticular germ cellsApoptotic germ cellsOral gavageMale miceSingle administrationTestosterone concentrationsHormone productionInhibitory effectSeminiferous tubulesAdverse effectsInduced apoptosisTBT exposureAcute toxicityCleavage enzyme