2018
Control of Spreading Depression with Electrical Fields
Whalen A, Xiao Y, Kadji H, Dahlem M, Gluckman B, Schiff S. Control of Spreading Depression with Electrical Fields. Scientific Reports 2018, 8: 8769. PMID: 29884896, PMCID: PMC5993812, DOI: 10.1038/s41598-018-26986-1.Peer-Reviewed Original ResearchConceptsElectric fieldField polarityDC electric fieldElectric field polarityElectrical controlOptical imagingPropagation pathIntrinsic optical imagingOpposite signDepression propagatesElectrical fieldField terminationElectro-chemical gradientPropagation velocityPropagatesFieldTraumatic brain injuryPropagationConfinementMore superficial layersDepression propagationBrain injurySynaptic transmissionBrain slicesWaves
2014
Oxygen and seizure dynamics: II. Computational modeling
Wei Y, Ullah G, Ingram J, Schiff S. Oxygen and seizure dynamics: II. Computational modeling. Journal Of Neurophysiology 2014, 112: 213-223. PMID: 24671540, PMCID: PMC4064403, DOI: 10.1152/jn.00541.2013.Peer-Reviewed Original ResearchConceptsSeizure eventsTissue oxygen pressureIntense neuronal firingSeizure patternsInhibitory neuronsNeuronal firingEpileptic seizuresSeizuresElectrophysiological recordingsOxygen metabolismSeizure dynamicsMetabolic energy consumptionEnergy metabolismExcitatoryMicroenvironment dynamicsRecent studies
2010
Assimilating Seizure Dynamics
Ullah G, Schiff S. Assimilating Seizure Dynamics. PLOS Computational Biology 2010, 6: e1000776. PMID: 20463875, PMCID: PMC2865517, DOI: 10.1371/journal.pcbi.1000776.Peer-Reviewed Original ResearchConceptsModern control theoryDynamics of networksDynamical systemsControl theoryUnmeasured partDynamical interactionsData assimilationSmall neuronal networksPhysical variablesDynamicsBrain dynamicsComputational modelSeizure dynamicsActual measurementsNeuronal networksMicroenvironment dynamicsObservabilityNetworkVariablesModelTheorySystemMeasurements
2009
Tracking and control of neuronal Hodgkin-Huxley dynamics
Ullah G, Schiff S. Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 2009, 79: 040901. PMID: 19518166, PMCID: PMC2713719, DOI: 10.1103/physreve.79.040901.Peer-Reviewed Original ResearchThe influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics
Cressman J, Ullah G, Ziburkus J, Schiff S, Barreto E. The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal Of Computational Neuroscience 2009, 26: 159-170. PMID: 19169801, PMCID: PMC2704057, DOI: 10.1007/s10827-008-0132-4.Peer-Reviewed Original ResearchConceptsSingle neuron dynamicsDetailed bifurcation analysisLarge amplitude oscillationsExtracellular ion concentration dynamicsMathematical modelBifurcation analysisDynamical mechanismIon concentration dynamicsNeuron dynamicsReasonable approximationFull modelCompanion paperDynamicsImportant fundamental processesConcentration dynamics
2008
The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics
Ullah G, Cressman Jr. J, Barreto E, Schiff S. The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. Journal Of Computational Neuroscience 2008, 26: 171-183. PMID: 19083088, PMCID: PMC2951284, DOI: 10.1007/s10827-008-0130-6.Peer-Reviewed Original Research
2002
Decreased Neuronal Synchronization during Experimental Seizures
Netoff T, Schiff S. Decreased Neuronal Synchronization during Experimental Seizures. Journal Of Neuroscience 2002, 22: 7297-7307. PMID: 12177225, PMCID: PMC6757884, DOI: 10.1523/jneurosci.22-16-07297.2002.Peer-Reviewed Original Research
1994
Stochastic versus deterministic variability in simple neuronal circuits: II. Hippocampal slice
Schiff S, Jerger K, Chang T, Sauer T, Aitken P. Stochastic versus deterministic variability in simple neuronal circuits: II. Hippocampal slice. Biophysical Journal 1994, 67: 684-691. PMID: 7948681, PMCID: PMC1225410, DOI: 10.1016/s0006-3495(94)80527-2.Peer-Reviewed Original ResearchConceptsInput-output time seriesEvidence of determinismTime seriesNonlinear predictionDeterministic variabilitySimple neuronal circuitLong time seriesSurrogate dataPresynaptic volley amplitudeStatistical controlFlow approachDiscrete adaptationDispersion approachInput-output functionAmplitudeSingle instanceApproach
1987
The effect of graded hypoxia on the hippocampal slice: an in vitro model of the ischemic penumbra.
Schiff S, Somjen G. The effect of graded hypoxia on the hippocampal slice: an in vitro model of the ischemic penumbra. Stroke 1987, 18: 30-37. PMID: 3027927, DOI: 10.1161/01.str.18.1.30.Peer-Reviewed Original ResearchConceptsMild hypoxiaSynaptic transmissionModerate hypoxiaHippocampal slicesGrade of hypoxiaHypoxic brain tissueExtracellular DC potentialDegree of hypoxiaPosthypoxic hyperexcitabilityIschemic penumbraExtracellular calciumExtracellular potassiumSynaptic functionBrain tissueHypoxiaHyperexcitabilityExtracellular pHSlicesSevere depolarizationNeuronsDC potentialResponse
1985
Hyperexcitability following moderate hypoxia in hippocampal tissue slices
Schiff S, Somjen G. Hyperexcitability following moderate hypoxia in hippocampal tissue slices. Brain Research 1985, 337: 337-340. PMID: 2992681, DOI: 10.1016/0006-8993(85)90071-x.Peer-Reviewed Original Research